精英家教网 > 高中数学 > 题目详情

已知:正方体ABCD-A1B1C1D1,棱长AA1=2,
(1)E为棱CC1的中点,求证:B1D1⊥AE;
(2)求:二面角C-AE-B的平面角的正切值;
(3)求:点D1到平面EAB的距离.

解:(1)证明:连接A1C1
∵AA1⊥平面A1C1
∴A1C1是AE在平面A1C1上的射影,
在正方形A1B1C1D1中,B1D1⊥A1C1
∴B1D1⊥AE
(2)连接BD交AC于O,过B点作BF⊥AE交AE于F,连接OF
∵EC⊥平面AC在正方形ABCD中,BD⊥AC,∴BD⊥平面ACE
∴OF是BF在平面EAC上的射影,∴AE⊥FO∴∠BFO是二面角B-AE-C的平面角
在正方形ABCD中,BO=AO=AC=
在Rt△ACE中,AE=3,∵△AOF∽△AEC,

∴OF==
在Rt△BOF中,tan∠BFO==3
(3)过C1作C1G⊥BE交BE的延长线于G,∵AB⊥平面BC1,G1G?平面BC1
∴AB⊥C1G,∴C1G⊥平面ABE,
∵D1C1∥AB,D1C1?平面ABE,
∴D1C1∥平面ABE,
∴D1到平面ABE的距离等于C1到平面ABE的距离
∵△C1GE∽△BCE,
∴C1G:C1E=BC:BE,
∴C1G==
∴D1到面ABE的距离等于
分析:(1)连接A1C1,根据正方体的结构特征得到A1C1是AE在平面A1C1上的射影,进而根据三垂线定理得到B1D1⊥AE.
(2)连接BD交AC于O,过B点作BF⊥AE交AE于F,连接OF,可得∠BFO是二面角B-AE-C的平面角,根据相似三角形性质求出OF后,解三角形BOF即可,得到二面角B-AE-C的平面角
(3)过C1作C1G⊥BE交BE的延长线于G,可证得D1C1∥平面ABE,即D1到平面ABE的距离等于C1到平面ABE的距离,即C1G长,根据相似三角形的性质,可求出点D1到平面EAB的距离
点评:本题考查的知识点是二面角的平面角及求法,点到平面的距离,线线垂直的判定,其中(1)的关键是用三垂线定理证明线线垂直,(2)的关键是确定∠BFO是二面角B-AE-C的平面角,(3)的关键是证得D1到平面ABE的距离等于C1到平面ABE的距离.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC∥平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位正方体ABCD-A1B1C1D1,E分别是棱C1D1的中点,试求:
(1)AE与平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在正方体ABCD-A1B1C1D1中,E、F分别是D1D、BD的中点,G在棱CD上,且CG=
14
CD.
(I)求证:EF⊥B1C;
(Ⅱ)求EF与C1G所成角的余弦值;
(Ⅲ)求二面角F-EG-C1的大小(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)已知:正方体ABCD-A1B1C1D1的棱长为1.
(Ⅰ)求棱AA1与平面A1BD所成的角;
(Ⅱ)求二面角B-A1D-B1的大小;
(Ⅲ)求四面体A1-BB1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位正方体ABCD-A1B1C1D1对棱BB1,DD1上有两个动点E、F,BE=D1F,设EF与面AB1所成角为α,与面BC1所成角为β,则α+β的最大值为
 

查看答案和解析>>

同步练习册答案