A. | (x+1)cosx<1,x∈(0,π) | B. | e${\;}^{{x}^{2}}$>1+x2,x∈(0,+∞) | ||
C. | sinx+tanx>2x,x∈(0,$\frac{π}{2}$) | D. | lnx+ex>x$-\frac{1}{x}$+2,x∈(0,+∞) |
分析 对于A,可举x=$\frac{π}{3}$∈(0,π),检验不等式即可判断;对于B,构造t=x2(t>0),f(t)=et-1-t,运用导数判断单调性即可得到;对于C,令f(x)=sinx+tanx-2x(0<x<π),求出导数,判断单调性,即可得到结论;对于D,lnx+ex>x$-\frac{1}{x}$+2,即为lnx+$\frac{1}{x}$>x+2-ex,(x>0),设f(x)=lnx+$\frac{1}{x}$,g(x)=x+2-ex,分别求出导数,判断单调性,求得最值,即可判断.
解答 解:对于A,可举x=$\frac{π}{3}$∈(0,π),可得(x+1)cosx=(1+$\frac{π}{3}$)×$\frac{1}{2}$>1,即有A不恒成立;
对于B,可令t=x2(t>0),由f(t)=et-1-t的导数为f′(t)=et-1>0,即为f(t)在t>0递增,
即有f(t)>f(0)=0,则原不等式恒成立;
对于C,令f(x)=sinx+tanx-2x(0<x<π),f′(x)=cosx+sec2x-2=cosx+$\frac{1}{co{s}^{2}x}$-2,
设t=cosx(0<t<1),则g(t)=t+t-2-2,g′(t)=1-2t-3<0,g(t)在(0,1)递减,即有g(t)>g(1)=0,
则f(x)>0恒成立;
对于D,lnx+ex>x$-\frac{1}{x}$+2,即为lnx+$\frac{1}{x}$>x+2-ex,(x>0),
设f(x)=lnx+$\frac{1}{x}$,g(x)=x+2-ex,f′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$,
当x>1时,f(x)递增,0<x<1时,f(x)递减,
即有x=1处f(x)取得最小值1;g(x)的导数为g′(x)=1-ex,
当x>0时,g′(x)<0,即有g(x)<1,故原不等式恒成立.
故选:A.
点评 本题考查不等式恒成立问题的解法,注意运用构造函数,运用导数判断单调性求得最值,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com