精英家教网 > 高中数学 > 题目详情

【题目】△ABC的内角A、B、C的对边分别为a、b、c,已知△ABC的面积为accosB,BC的中点为D. (Ⅰ) 求cosB的值;
(Ⅱ) 若c=2,asinA=5csinC,求AD的长.

【答案】解:(Ⅰ) 由题意,△ABC的面积为 ,得sinB=2cosB, ∵0<B<π,
∴sinB>0,∴cosB>0,
又sin2B+cos2B=1,
①代入②得
=
(Ⅱ)由asinA=5csinC及正弦定理得a2=5c2
∵c=2,∴

在△ABD中,由余弦定理得:


【解析】(Ⅰ) 由△ABC的面积公式,利用同角的三角函数关系,即可求出cosB的值;(Ⅱ)由题意,利用正弦、余弦定理,即可求出AD的值.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是求样本x1、x2、…x10平均数 的程序框图,图中空白框中应填入的内容为(
A.S=S+xn
B.S=S+
C.S=S+n
D.S=S+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,ABCD是平行四边形,BDEF是矩形,ED⊥面ABCD,∠ABD= ,AB=2AD.
(Ⅰ)求证:平面BDEF⊥平面ADE;
(Ⅱ)若ED=BD,求AF与平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若关于x的不等式f(x)<g(x)有解,求实数a的取值范围;
(Ⅱ)若关于x的不等式f(x)<g(x)的解集为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆F1:(x+1)2+y2=16,定点F2(1,0),A是圆F1上的一动点,线段F2A的垂直平分线交半径F1A于P点. (Ⅰ)求P点的轨迹C的方程;
(Ⅱ)四边形EFGH的四个顶点都在曲线C上,且对角线EG,FH过原点O,若kEGkFH=﹣ ,求证:四边形EFGH的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知直线l1:y=tanαx(0≤a<π,α ),抛物线C: (t为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系 (Ⅰ)求直线l1和抛物线C的极坐标方程;
(Ⅱ)若直线l1和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2 , l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设已知抛物线C:y2=2px的焦点为F1 , 过F1的直线l与曲线C相交于M,N两点.
(1)若直线l的倾斜角为60°,且|MN|= ,求p;
(2)若p=2,椭圆 +y2=1上两个点P,Q,满足:P,Q,F1三点共线且PQ⊥MN,求四边形PMQN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的定义域的R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)f(y)=f(x+y)成立,若数列{an}满足f(an+1)f( )=1(n∈N*),且a1=f(0),则下列结论成立的是(
A.f(a2013)>f(a2016
B.f(a2014)>f(a2017
C.f(a2016)<f(a2015
D.f(a2013)>f(a2015

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 = ).
(Ⅰ)当 =2时,求函数 在(1, )处的切线方程;
(Ⅱ)若 ≥1时, ≥0,求实数 的取值范围.

查看答案和解析>>

同步练习册答案