精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的长轴长为4,焦距为

求椭圆的方程;

过动点的直线交轴与点,交于点 (在第一象限),且是线段的中点.过点轴的垂线交于另一点,延长于点.

设直线的斜率分别为,证明为定值;

求直线的斜率的最小值.

【答案】;()()见解析,()直线AB 的斜率的最小值为

【解析】试题分析:()分别计算a,b即得.

)()设,由M(0,m),可得的坐标,进而得到直线PM的斜率,直线QM的斜率,可得为定值.

)设.直线PA的方程为y=kx+m,直线QB的方程为y=–3kx+m.联立应用一元二次方程根与系数的关系得到,进而可得应用基本不等式即得.

试题解析:()设椭圆的半焦距为c.

由题意知

所以.

所以椭圆C的方程为.

)()设

M(0,m),可得

所以直线PM的斜率

直线QM的斜率.

此时.

所以为定值–3.

)设.

直线PA的方程为y=kx+m

直线QB的方程为y=–3kx+m.

联立

整理得.

,可得

所以.

同理.

所以

所以

,可知k>0

所以,等号当且仅当时取得.

此时,即,符号题意.

所以直线AB 的斜率的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,若存在,使得,求实数的取值范围;

(2)若为正整数,方程的两个实数根满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子里有编号为的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.

甲说:我无法确定.”

乙说:我也无法确定.”

甲听完乙的回答以后,甲又说:我可以确定了.”

根据以上信息, 你可以推断出抽取的两球中

A. 一定有3号球 B. 一定没有3号球 C. 可能有5号球 D. 可能有6号球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点,点是圆上任意一点,线段的垂直平分线交于点,设动点的轨迹为.

(Ⅰ)求的方程;

(Ⅱ)设直线与轨迹交于两点, 为坐标原点,若的重心恰好在圆上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在极坐标系中,已直曲线,将曲线C上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C1,又已知直线,且直线C1交于AB两点,

1求曲线C1的直角坐标方程,并说明它是什么曲线;

2)设定点, 求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义为R的偶函数,且对任意的,都有且当时, ,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列是正整数的任一排列,且同时满足以下两个条件:

;②当时, ().

记这样的数列个数为.

(I)写出的值;

(II)证明不能被4整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是梯形, ,侧面底面.

(1)求证:平面平面

(2)若,且三棱锥的体积为,求侧面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示,其中正视图与侧视图是腰长为6的等腰直角三角形,俯视图是正方形.

(1)请画出该几何体的直观图,并求出它的体积;

(2)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCDA1B1C1D1?如何组拼?试证明你的结论;

(3)在(2)的情形下,设正方体ABCDA1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC所成二面角的余弦值.

查看答案和解析>>

同步练习册答案