分析 求出f(x)的导函数,分解因式后,根据a>0,a=0和a<0,分别讨论导函数的正负即可得到函数的单调区间.
解答 解:∵f(x)=x3+ax2+1,a∈R
∴f′(x)=3x2+2ax=x(3x+2a),
①当a>0时,由f′(x)>0,得x>0,或x<-$\frac{2a}{3}$,
由f′(x)<0,得-$\frac{2a}{3}$<x<0,
∴f(x)=x3+ax2的增区间为(-∞,-$\frac{2a}{3}$),(0,+∞),减区间为(-$\frac{2a}{3}$,0).
②当a=0时,由f′(x)=3x2≥0恒成立,∴函数f(x)在(-∞,+∞)单调递增.
③当a<0时,由f′(x)>0,得x>-$\frac{2a}{3}$,或x<0,
由f′(x)<0,得0<x<-$\frac{2a}{3}$,
∴f(x)=x3+ax2的增区间为(-∞,0),(-$\frac{2a}{3}$,+∞),减区间为(0,$\frac{2a}{3}$).
点评 此题考查学生会根据导函数的正负判断得到函数的单调区间.解题时要认真审题,仔细解答,注意分类讨论思想的合理运用.
科目:高中数学 来源: 题型:选择题
A. | (-∞,1]∪[3,+∞) | B. | (-∞,-1) | C. | (3,+∞) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | 1 | C. | 3 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | k=3 | B. | k=-3 | C. | k=$\frac{1}{3}$ | D. | k=-$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1≤m<$\frac{4}{5}$ | B. | m≤-1或m>1 | C. | m=-1或m>1 | D. | m=-1或0<m<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{2}}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com