精英家教网 > 高中数学 > 题目详情
函数y=sin(πx+φ)(φ>0)的部分图象如图所示,设P是图象的最高点,A,B是图象与x轴的交点,记∠APB=θ,则sin2θ的值是(  )
分析:由解析式求出函数的周期与最值,做出辅助线过p作PD⊥x轴于D,根据周期的大小看出直角三角形中直角边的长度,解出∠APD与∠BPD的正弦和余弦,利用两角和与差公式求出sinθ,进而求得sin2θ.
解答:解:函数y=sin(πx+φ)
∴T=
π
=2,
过p作PD⊥x轴于D,则AD是四分之一个周期,有AD=
1
2
,DB=
3
2
,DP=1,AP=
5
2

在直角三角形中有sin∠APD=
5
5
,cos∠APD=
2
5
5
;cos∠BPD=
2
13
13
,sin∠BPD=
3
13
13

∴sinθ=sin(∠APD+∠BPD)=
5
5
×
2
13
13
+
2
5
5
×
3
13
13
=
8
65
65

cosθ=
65
65

∴sin2θ=2sinθcosθ=2×
65
65
×
8
65
65
=
16
65

故选:A.
点评:本题考查三角函数的图象的应用与两角和的正切函数公式的应用,本题解题的关键是看出函数的周期,把要求正弦的角放到直角三角形中,利用三角函数的定义得到结果,本题是一个中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=sin(x+
π
6
)sin(x-
π
6
)+acosx的最大值.(其中a为定值)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设ω>0,函数y=sin(ωx+φ)(-π<φ<π)的图象向左平移
π
3
个单位后,得到下面的图象,则ω,φ的值为(  )
A、ω=1,?=
3
B、ω=2,?=
3
C、ω=1,?=-
π
3
D、ω=2,?=-
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinπxcosπx的最小正周期是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博一模)已知函数y=sin(ωx+φ)(ω>0,0<φ≤
π
2
)的部分图象如示,则φ的值为
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设ω>0,函数y=sin(ωx+
π
3
)的图象向右平移
3
个单位后与原图象重合,则ω的最小值是(  )
A、
3
4
B、
3
2
C、3
D、
9
4

查看答案和解析>>

同步练习册答案