精英家教网 > 高中数学 > 题目详情

【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况.

学期

1

2

3

4

5

6

总分(分)

512

518

523

528

534

535

(1)请根据上表提供的数据,用相关系数说明的线性相关程度,并用最小二乘法求出关于的线性回归方程(线性相关系数保留两位小数);

(2)在第六个学期测试中学校根据 《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有人,求的分布列和期望.

参考公式:

相关系数

参考数据:.

【答案】(1) .

(2)分布列见解析,期望是.

【解析】分析:(1)根据表格中数据及平均数公式可求出的值从而可得样本中心点的坐标,从而求可得公式中所需数据,求出再结合样本中心点的性质可得,进而可得关于的回归方程;(2)的可能取值为根据超几何分布概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.

详解(1)由表中数据计算得:.

综上的线性相关程度较高.

故所求线性回归方程:.

(2)服从超几何分布,所有可能取值为

所以的分布列为

1

2

3

4

期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.

(1)求证:BC1∥平面A1CD;
(2)若四边形BCC1B1是正方形,且A1D= ,求直线A1D与平面CBB1C1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+y2=r2(r>0)与直线l:y=x+3,且直线l有唯一的一个点P,使得过P点作圆C的两条切线互相垂直,则r=;设EF是直线l上的一条线段,若对于圆C上的任意一点Q,∠EQF≥ ,则|EF|的最小值=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A、B、C所对的边分别为a、b、c,且2acosB=3b﹣2bcosA.

(1)求 的值;
(2)设AB的中垂线交BC于D,若cos∠ADC= ,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?”如图所示的是解决该问题的程序框图,执行该程序框图,若输出的(单位:升),则输入的值为( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数, 为自然对数的底数).

1)当时,求函数的单调区间;

2)若函数内存在三个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S—ABCD的底面是正方形,侧棱SA⊥底面ABCD,

过A作AE垂直SB交SB于E点,作AH垂直SD交SD于H点,平面AEH交SC于K点,且AB=1,SA=2.

(1)证明E、H在以AK为直径的圆上,且当点P是SA上任一点时,试求的最小值;

(2)求平面AEKH与平面ABCD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在直角坐标系中,直线过点,倾斜角为. 以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线交于两点.

(1)求直线的参数方程(设参数为)和曲线的普通方程;

(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在Rt△ABC中,CA=CB=2,M,N是斜边AB上的两个动点,且MN= ,则 的取值范围为

查看答案和解析>>

同步练习册答案