精英家教网 > 高中数学 > 题目详情

【题目】以三角形边为边向形外作正三角形,则三线共点,该点称为的正等角中心.当的每个内角都小于120时,正等角中心点P满足以下性质:

1;(2)正等角中心是到该三角形三个顶点距离之和最小的点(也即费马点).由以上性质得的最小值为_________

【答案】

【解析】

由题可知,所要求的代数式恰好表示平面直角坐标系中三个距离之和,所以首先要把代数式中三个距离的对应的点找到,再根据题干所述找到相应的费马点,即可得出结果.

解:根据题意,在平面直角坐标系中,令点

表示坐标系中一点到点的距离之和,

因为是等腰三角形,

所以点在轴负半轴上,所以轴重合,

的费马点为,则上,

因为是锐角三角形,由性质(1)得

所以,所以,所以

的距离分别为

所以的最小值,

即为费马点到点的距离之和,则

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】先阅读下列不等式的证法,再解决后面的问题:

已知,求证:.

证明:构造函数

.

因为对一切,恒有

所以,从而得.

1)若,请写出上述结论的推广式;

2)参考上述证法,对你推广的结论加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上动点到点的距离与到直线的距离之比为,记动点的轨迹为曲线.

1)求曲线的方程;

2)设是曲线上的动点,直线的方程为.

①设直线与圆交于不同两点 ,求的取值范围;

②求与动直线恒相切的定椭圆的方程;并探究:若是曲线 上的动点,是否存在直线 恒相切的定曲线?若存在,直接写出曲线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列是公差为2的等差数列,数列满足b1=1,b2=2,且anbnbnnbn1.

(1)求数列,的通项公式;

(2)设数列满足,数列的前n项和为,若不等式

对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断函数的奇偶性,并加以证明;

2)用定义证明上是减函数;

3)函数上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线

1)求证:无论取何值,直线始终经过第一象限;

2)若直线轴正半轴交于点,与轴正半轴交于点,为坐标原点,设的面积为,求的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆内接四边形ABCD的边

Ⅰ)求角C的大小和BD的长;

Ⅱ)求四边形ABCD的面积及外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场在促销期间规定:商场内所有商品按标价的出售,当顾客在商场内消费一定金额后,按如下方案获得相应金额的奖券:

消费金额(元)的范围

获得奖券的金额(元)

30

60

100

130

根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:元,设购买商品得到的优惠率=(购买商品获得的优惠额)/(商品标价),试问:

1)若购买一件标价为1000元的商品,顾客得到的优惠率是多少?

2)对于标价在(元)内的商品,顾客购买标价为多少元的商品,可得到不小于的优惠率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)(题文)已知椭圆的左右顶点分别为,右焦点的坐标为,点坐标为,且直线轴,过点作直线与椭圆交于两点(在第一象限且点在点的上方),直线交于点,连接.

(1)求椭圆的方程;

(2)设直线的斜率为,直线的斜率为,问:的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.

查看答案和解析>>

同步练习册答案