精英家教网 > 高中数学 > 题目详情

【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:

年龄

[20,25)

[25,30)

[30,35)

[35,40)

[40,45)

人数

4

5

8

5

3

年龄

[45,50)

[50,55)

[55,60)

[60,65)

[65,70)

人数

6

7

3

5

4

经调查年龄在[25,30),[55,60)的被调查者中赞成“延迟退休”的人数分别是3人和2人.现从这两组的被调查者中各随机选取2人,进行跟踪调查.

(I)求年龄在[25,30)的被调查者中选取的2人都赞成“延迟退休”的概率;

(II)若选中的4人中,不赞成“延迟退休”的人数为,求随机变量的分布列和数学期望.

【答案】(Ⅰ) ;(Ⅱ)见解析.

【解析】试题分析: (1)利用古典概型的概率公式,求出年龄在[25,30)的被调查者中选取的2人都是赞成的概率;

2)由已知得的可能取值为0123,分别求出相应的概率,由此能求出随机变量的分布列和数学期望.

试题解析:(Ⅰ) 设“年龄在的被调查者中选取的人都是赞成”为事件

所以

(Ⅱ) 的可能取值为

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差和患感冒的小朋友人数(/人)的数据如下:

温差

患感冒人数

8

11

14

20

23

26

其中.

(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合的关系;

(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)

参考数据:.参考公式:相关系数:,回归直线方程是 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知4名学生和2名教师站在一排照相,求:

(1)中间二个位置排教师,有多少种排法?

(2)首尾不排教师,有多少种排法?

(3)两名教师不站在两端,且必须相邻,有多少种排法?

(4)两名教师不能相邻的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)求的单调递减区间;

(2)证明:当时, 恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)若曲线处的切线与直线垂直,求实数的值;

2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

3)若上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理是合情推理的是(  )

①由圆的性质类比出球的有关性质;

②由直角三角形、等腰三角形、等边三角形内角和是归纳出所有三角形的内角和都是;③由,满足,,推出是奇函数;

④三角形内角和是,四边形内角和是,五边形内角和是,由此得凸多边形内角和是.

A. ①②B. ①③④C. ②④D. ①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x4(x+4)8=a0+a1(x+3)+a2(x+3)2+…+a12(x+3)12,则log2(a1+a3+…+a11)=( ).

A. 4B. 8C. 12D. 11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形,已知 .

(1)求证:

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

同步练习册答案