精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,短轴的一个端点到焦点的距离为.

(1)求椭圆的方程;

(2)是椭圆上的两点,线段的中点在直线上,求直线的斜率的取值范围.

【答案】(1);(2).

【解析】

(1)利用短轴的一个端点到焦点的距离可得,结合离心率可得方程;

(2)联立方程结合韦达定理可求AB的中点,进而可得斜率的范围.

解:(1)由已知得椭圆的离心率为,短轴的一个端点到焦点的距离为

解得

所以椭圆的方程为.

(2)当直线的斜率不存在时,直线的中点在直线上,符合题意;

当直线的斜率存在时,设直线的方程为,点

将直线的方程与椭圆方程联立并化简,得

由韦达定理得

,化简得.

由线段的中点在直线上,得

,即,即

代入,得

解得.

因此,直线的斜率的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)若,求不等式的解集;

(2)若时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)当,且,关于的方程有唯一实数解,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列n项和为,且其中m为实常数, .

1)求证:是等比数列;

2)若数列的公比满足,求证:数列 是等差数列,并求的通项公式;

3)若时,设,求数列的前n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂抽取了一台设备在一段时间内生产的一批产品,测量一项质量指标值,绘制了如图所示的频率分布直方图.

(1)计算该样本的平均值,方差;(同一组中的数据用该组区间的中点值作代表)

(2)根据长期生产经验,可以认为这台设备在正常状态下生产的产品的质量指标值服从正态分布,其中近似为样本平均值,近似为样本方差.任取一个产品,记其质量指标值为.若,则认为该产品为一等品;,则认为该产品为二等品;若,则认为该产品为不合格品.已知设备正常状态下每天生产这种产品1000个.

(i)用样本估计总体,问该工厂一天生产的产品中不合格品是否超过

(ii)某公司向该工厂推出以旧换新活动,补足50万元即可用设备换得生产相同产品的改进设备.经测试,设备正常状态下每天生产产品1200个,生产的产品为一等品的概率是,二等品的概率是,不合格品的概率是.若工厂生产一个一等品可获得利润50元,生产一个二等品可获得利润30元,生产一个不合格品亏损40元,试为工厂做出决策,是否需要换购设备

参考数据:①;②;③.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)讨论的单调性;

(2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1左右焦点为F1F2直线(1xy0与该椭圆有一个公共点在y轴上,另一个公共点的坐标为(m1).

1)求椭圆C的方程;

2)设P为椭圆C上任一点,过焦点F1F2的弦分别为PMPN,设λ1λ2,求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.

(1)求图中的值;

(2)估计该校担任班主任的教师月平均通话时长的中位数;

(3)在这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=|2x-1|+|x+m|

l)当m=l时,解不等式fx)≥3;

2)证明:对任意xR2fx)≥|m+1|-|m|

查看答案和解析>>

同步练习册答案