【题目】如图,在四棱锥中, 平面, , , , , 为线段上的点.
(1)证明: 平面;
(2)若是的中点,求与平面所成的角的正切值.
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.
(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上.若DE∥平面ACF,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,﹣ )的图象如图所示,直线x= ,x= 是其两条对称轴.
(1)求函数f(x)的解析式及单调区间;
(2)若f(α)= ,且 ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据《中华人民共和国道路交通安全法》规定:“车辆驾驶员血液酒精溶度(单位mg/100ml)/在,属于酒后驾驶;血液浓度不低于80,属于醉酒驾驶。”2017年“中秋节”晚9点开始,济南市交警队在杆石桥交通岗前设点,对过往的车辆进行检查,经过4个小时,共查处喝过酒的驾驶者60名,下图是用酒精测试仪对这60名驾驶者血液中酒精溶度进行检测后所得结果画出的频率分布直方图。
(1)求这60名驾驶者中属于醉酒驾车的人数(图中每组包括左端点,不包括右端点)
(2)若以各小组的中值为该组的估计值,频率为概率的估计值,求这60名驾驶者血液的酒精浓度的平均值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的方程为:ax2+ay2﹣2a2x﹣4y=0(a≠0,a为常数).
(1)判断曲线C的形状;
(2)设曲线C分别与x轴、y轴交于点A、B(A、B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;
(3)设直线l:y=﹣2x+4与曲线C交于不同的两点M、N,且|OM|=|ON|,求曲线C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】西部大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:
(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准;
(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆M:: + =1(a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.
(1)求椭圆方程;
(2)当直线l的倾斜角为45°时,求线段CD的长;
(3)记△ABD与△ABC的面积分别为S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,计算得 =80, =20, i=184, =720.
(1)求家庭的月储蓄对月收入的回归方程;
(2)判断月收入与月储蓄之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com