精英家教网 > 高中数学 > 题目详情

【题目】如图,在透明塑料制成的长方体ABCD﹣A1B1C1D1容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法: ①水的部分始终呈棱柱状;
②水面四边形EFGH的面积不改变;
③棱A1D1始终与水面EFGH平行;
④当E∈AA1时,AE+BF是定值.其中正确说法的是(

A.②③④
B.①②④
C.①③④
D.①②③

【答案】C
【解析】解:①水的部分始终呈棱柱状;从棱柱的特征平面AA1B1B平行平面CC1D1D即可判断①正确;②水面四边形EFGH的面积不改变;EF是可以变化的EH不变的,所以面积是改变的,②是不正确的③棱A1D1始终与水面EFGH平行;由直线与平面平行的判断定理,可知A1D1∥EH,所以结论正确;④当E∈AA1时,AE+BF是定值.水的体积是定值,高不变,所以底面面积不变,所以正确.

故选:C.

①水的部分始终呈棱柱状;从棱柱的特征平面判断即可;②水面四边形EFGH的面积不改变;可以通过EF 的变化EH不变判断正误;③棱A1D1始终与水面EFGH平行;利用直线与平面平行的判断定理,推出结论;④当E∈AA1时,AE+BF是定值.通过水的体积判断即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x),x∈R,对于任意的x,y∈R,f(x+y)=f(x)+f(y),若f(1)= ,则f(﹣2016)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)定义域为[0,+∞),当x∈[0,1]时,f(x)=sinπx,当x∈[n,n+1]时,f(x)= ,其中n∈N,若函数f(x)的图象与直线y=b有且仅有2016个交点,则b的取值范围是(
A.(0,1)
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正实数a,b满足ab=ba , 且0<a<1,则a,b的大小关系是(
A.a>b
B.a=b
C.a<b
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据调查分析,若干年内某产品关税与市场供应量P的关系近似地满足:y=P(x)=2 ,(其中,t为关税的税率,且t∈[0, ),x为市场价格,b,k为正常数),当t= 时的市场供应量曲线如图.
(Ⅰ)根据图象求b,k的值;
(Ⅱ)若市场需求量为Q(x)=2 ,当p=Q时的市场价格称为市场平衡价格,当市场平衡价格保持在10元时,求税率t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足g(3)=8,又定义域为实数集R的函数f(x)= 是奇函数.
(1)讨论函数y=f(x)的单调性;
(2)若对任意的t∈R,不等式f(2t﹣3t2)+f(t2﹣k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,0), =(1,1), =(﹣1,1). (Ⅰ)λ为何值时, 垂直?
(Ⅱ)若(m +n )∥ ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 则异面直线BA1与AC1所成的角等于(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ ax2﹣2x(a<0)
(1)若函数f(x)在定义域内单调递增,求a的取值范围;
(2)若a=﹣ 且关于x的方程f(x)=﹣ x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

同步练习册答案