精英家教网 > 高中数学 > 题目详情

【题目】如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点求证:

1BE平面DMF;

2平面BDE平面MNG

【答案】见解析

【解析】

试题分析:1欲证线面平行常转化为找线与面中的一条直线平行

本题中可结合题中的中点条件,找线BE与面中的线MO平行得证

2证面面平行,需运用面与面平行的判定找线与面平行,

利用中点条件找出两条相交直线DE和BD与面BDE平行得证

试题解析:1如图连接AE则AE必过DF与GN的交点O连接MO

则MO为ABE的中位线所以BEMO

又BE平面DMF,MO平面DMF,所以BE平面DMF

2因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DEGN,

又DE平面MNG,GN平面MNG,所以DE平面MNG

又M为AB中点,所以MN为ABD的中位线,所以BDMN,

又BD平面MNG,MN平面MNG,所以BD平面MNG,又DE与BD为平面BDE 内的两条相交直线, 所以平面BDE平面MNG

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系内从点P1(0,0)作x轴的垂线交曲线y=ex于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2.再从P2x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1Q1P2Q2;…;PnQn,记点的坐标为(,0)(k=1,2,…,n).

(1)试求的关系(k=2,…,n);

(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为:t为参数),直线与曲线C分别交于MN

)写出曲线C和直线的普通方程;

)若成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为(  )
A.35
B.20
C.18
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)解不等式

(2)若函数,其中为奇函数,为偶函数,若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,且
(1)证明:sinAsinB=sinC;
(2)若 ,求tanB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P( )在椭圆E上.
(1)求椭圆E的方程;
(2)设不过原点O且斜率为 的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,
证明:︳MA︳︳MB︳=︳MC︳︳MD︳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长均相等的正四棱锥P-ABCD中,O为底面正方形的重心,MN分别为侧棱PAPB的中点,有下列结论:

PC∥平面OMN

②平面PCD∥平面OMN

OMPA

④直线PD与直线MN所成角的大小为90°.

其中正确结论的序号是______.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数. f(x)的单调区间和极值.

查看答案和解析>>

同步练习册答案