精英家教网 > 高中数学 > 题目详情
18.设定义在R上的函数f(x)的导函数为f′(x),当x>0时f′(x)>1,f($\frac{π}{6}$)=$\frac{1}{2}$,且f(x)-f(-x)=2sinx,则不等式2f(x-$\frac{π}{3}$)≤sinx-$\sqrt{3}$cosx的解集为[$\frac{π}{6}$,$\frac{π}{2}$].

分析 构造函数g(x),求出g(x)的奇偶性和单调性,问题转化为g(x-$\frac{π}{3}$)≤g($\frac{π}{6}$),结合函数的单调性求出x的范围即可.

解答 解:令g(x)=f(x)-sinx,
则g(-x)=f(-x)-sin(-x)=f(-x)+sinx,
∵f(x)-f(-x)=2sinx,
∴g(-x)=g(x),g(x)是偶函数,
∵当x>0时f′(x)>1,
∴g′(x)=f′(x)-cosx>1-cosx>0,
∴g(x)在(0,+∞)递增,
∴g(x)在(-∞,0)递减,
∵2f(x-$\frac{π}{3}$)≤sinx-$\sqrt{3}$cosx,f($\frac{π}{6}$)=$\frac{1}{2}$
∴g(x-$\frac{π}{3}$)≤g($\frac{π}{6}$),
∴|x-$\frac{π}{3}$|≤$\frac{π}{6}$,解得:$\frac{π}{6}$≤x≤$\frac{π}{2}$,
故不等式的解集是[$\frac{π}{6}$,$\frac{π}{2}$],
故答案为:[$\frac{π}{6}$,$\frac{π}{2}$].

点评 本题考查了函数的单调性、奇偶性问题,考查导数的应用,构造函数g(x)是解题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知x,y,z均大于1,a≠0,logza=24,logya=40,log(x•y•z)a=12,求logxa.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知复数z1满足z1•i=1+i(i为虚数单位),复数z2的虚部为2.
(Ⅰ)求z1
(Ⅱ)若z1•z2是纯虚数,求z2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图(1),在等腰梯形ABCD中,AB∥CD,E,F分别为AB和CD的中点,且AB=EF=2,CD=6,M为BC中点,现将梯形BEFC沿EF所在直线折起,使平面EFCB⊥平面EFDA,如图(2)所示,N是线段CD上一动点,且CN=λND.
(Ⅰ)当$λ=\frac{1}{2}$时,求证:MN∥平面ADFE;
(Ⅱ)当λ=1时,求二面角M-NA-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x2-ax-a)ex,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某校高一、高二和高三年级分别有学生1000名、800名、700名,现运用分层抽样的方法从中抽取容量为100的样本,则抽出的高二年级的学生人数为32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是 (  )
A.①⑤⑥,②③④B.①③⑤,②④⑥C.①②③,④⑤⑥D.①②⑥,③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知M1={第一象限角},M2={锐角}.M3={0°~90°的角},M4={小于90°的角},则(  )
A.M1=M2=M3=M4B.M1?M2?M3?M4C.M1⊆M2⊆M3⊆M4D.M2⊆M3且M2⊆M4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)若点P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,求直线AB的方程.
(2)若直线y=2x+b与圆x2+y2=4相交A,B两点,求弦AB中点M的轨迹方程.

查看答案和解析>>

同步练习册答案