【题目】在四棱锥中, , , , , , ,且平面.
(1)设平面平面,求证: .
(2)求证: .
(3)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.
【答案】(1)见解析;(2)见解析;(3)
【解析】试题分析:(1)利用平行四边形的性质和平行线的传递性即可找出两个平面的交线并且证明结论;(2)利用已知条件结合勾股定理先证明,再利用线面垂直的性质定理和判定定理即可证明;(3)通过结论空间直角坐标系,设,利用法向量与斜线所成的角即可找出点的位置.
试题解析:(1)如图所示,过点作,并且取,连接,
∴四边形为平行四边形,∴,
∵,∴,即为平面平面, .
(2)在和中,由勾股定理可得, ,∵,∴,∴, ,∴,∴,即;∵底面,∴,∵,∴平面,故.
(3)建立如图所示的空间直角坐标系,则, , , , ,∴,设,则,∴, ,由(2)可知为平面的法向量,∴,∵直线与平面所成角的正弦值为,∴,化为,解得,∴.
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的短轴长为,右焦点为,点是椭圆上异于左、右顶点的一点.
(1)求椭圆的方程;
(2)若直线与直线交于点,线段的中点为,证明:点关于直线的对称点在直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
(2)当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于维向量,若对任意均有或,则称为维向量. 对于两个维向量定义.
(1)若, 求的值;
(2)现有一个维向量序列: 若且满足: ,求证:该序列中不存在维向量.
(3) 现有一个维向量序列: 若且满足: ,若存在正整数使得为维向量序列中的项,求出所有的.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把正整数排成如图(a)的三角形阵,然后擦去第偶数行中的所有奇数,第奇数行中的所有偶数,可得如图(b)三角形阵,现将图(b)中的正整数按从小到大的顺序构成一个数列{an},若ak=2017,则k= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,椭圆 的离心率为是椭圆的右焦点,直线的斜率为为坐标原点.
(1)求的方程;
(2)设过点的动直线与相交于两点,当的面积最大时,求的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com