精英家教网 > 高中数学 > 题目详情
10.已知幂函数y=f(x)过点(2,8),则f(3)=(  )
A.27B.9C.8D.4

分析 把点(2,3)代入函数解析式列出方程求出α的值,即可求出函数的解析式,从而求出函数值即可.

解答 解:因为幂函数y=f(x)=xα过点(2,8),
所以8=2α,解得α=3,
故f(x)=x3,f(3)=27,
故选:A.

点评 本题考查利用待定系数法求幂函数的解析式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知点F为抛物线y2=2px(p>0)的焦点,点M(2,m)在抛物线E上,且|MF|=3.
(1)求抛物线E的方程;
(2)过x轴正半轴上一点N(a,0)的直线与抛物线E交于A,B两点,若OA⊥OB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一个焦点是(2,0),则其渐近线的方程为(  )
A.x±$\sqrt{3}$y=0B.$\sqrt{3}$x±y=0C.x±3y=0D.3x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设P为有公共焦点F1,F2的椭圆C1与双曲线C2的一个交点,且PF1⊥PF2,椭圆C1的离心率为e1,双曲线C2的离心率为e2,若3e1=e2,则e1=$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴.已知曲线C的极坐标方程为ρ=8sinθ
(1)求曲线C的直角坐标方程;
(2)设直线$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$(t为参数)与曲线C交于A,B两点,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3,x>-1}\\{{2}^{x+1}-1,x≤-1}\end{array}\right.$,已知f(a)=3,则a的值是(  )
A.0B.-2C.0或-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)当x∈($\frac{π}{12}$,$\frac{π}{3}$)时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)对任意实数x,y均有f(x)=f($\frac{x+y}{2}$)+f($\frac{x-y}{2}$).当x>0时,f(x)>0
(1)判断函数f(x)在R上的单调性并证明;
(2)设函数g(x)与函数f(x)的奇偶性相同,当x≥0时,g(x)=|x-m|-m(m>0),若对任意x∈R,不等式g(x-1)≤g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四边形ABCD为矩形,PB=2,BC=3,PA⊥平面ABCD.
(1)证明:平面PCD⊥平面PAD;
(2)当AB的长为多少时,点B到平面ACD的距离为$\frac{3}{2}$?请说明理由.

查看答案和解析>>

同步练习册答案