精英家教网 > 高中数学 > 题目详情
已知圆C:(x-3)2+(y+1)2=2,则在坐标轴上的截距相等且与圆相切的直线有
 
条.
分析:先看直线不过原点的情况,设出直线的方程,斜率为-1,则可知这样的直线有2条,再看直线过原点的情况,把原点代入即可知原点在圆外,则这样的直线也应该有2条,最后验证以上4条中有一条是重复,最后综合得到结论.
解答:解:若直线不过原点
x
a
+
y
a
=1
斜率=-1
则应该有2条
若过原点
把(0,0)代入(0-3)2+(y+1)2>2
即原点在圆外
所以过原点有2条切线
下面检验过原点且斜率等于-1的
是x+y=0
圆心(3,-1)到x+y=0距离=
2
2
=
2
=半径
所以x+y=0是切线
即上面4条有重复的
所以一共有3条
点评:本题主要考查了直线与圆的位置关系.考查了学生数形结合的思想和对基本知识的理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(Ⅰ)若l1与圆相切,求l1的方程;
(Ⅱ)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,求证:AM•AN为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知圆C:(x-3)2+(y-4)2=4,
(Ⅰ)若直线l1过定点A(1,0),且与圆C相切,求l1的方程;
(Ⅱ)若圆D的半径为3,圆心在直线l2:x+y-2=0上,且与圆C外切,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=4,
(1)直线l1过定点A (1,0).若l1与圆C相切,求l1的方程;
(2)直线l2过B(2,3)与圆C相交于P,Q两点,求线段PQ的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=4,
(Ⅰ)若a=y-x,求a的最大值和最小值;
(Ⅱ)若圆D的半径为3,圆心在直线L:x+y-2=0上,且与圆C外切,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x+3)2+(y-4)2=4.
(1)若直线l1过点A(-1,0),且与圆C相切,求直线l1的方程;
(2)若圆D的半径为4,圆心D在直线l2:2x+y-2=0上,且与圆C内切,求圆D的方程.

查看答案和解析>>

同步练习册答案