精英家教网 > 高中数学 > 题目详情
16.(1)设A={1,2,3},对于A的每个非空子集X,用S(x)表示X中各元素的积,求所有S(x)的积;
(2)给定n,令A(n)={a[a为质数,且a整除n},用列举法表示A(30).

分析 (1)先求出关于A的每个非空子集X,再求出S(X)即可;(2)根据质数的定义,求出a的值即可.

解答 解:(1)x可以为{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}中任一个,
则对应的S(x)的积依次为1,2,3,2,3,6,6,
则所有S(x)的积为1×2×3×2×3×6×6=1256;
(2)给定n=30,若A(30)={a[a为质数,且a整除n},
由30÷1=30,30÷2=15,30÷3=10,30÷5=6,
得:a=1,2,3,5,
用列举怯表示A(30)={1,2,3,5}.

点评 本题考查了新定义问题,考查集合的表示方法,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知平面直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,点A(3$\sqrt{2}$,$\frac{π}{4}$),曲线C:p2=2pcosθ+1.
(1)写出点A的直角坐标及曲线C的直角坐标方程,并指出曲线C的类型;
(2)若点B是曲线C上的动点,直线l的参数方程是$\left\{\begin{array}{l}{x=-3+t}\\{y=t}\end{array}\right.$(t是参数),求线段AB的中点D到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算${∫}_{0}^{2}$f(x)dx,其中f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{x-1,1<x<2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-x+1.
(1)若y=f(x)-kx在[4,+∞)单调递增,求k的取值范围;
(2)若函数h(x)=f(x)+2m在区间(-1,0)上存在零点,求a的取值范围;
(3)设g(t)=f(2t+a),t∈[-1,1],求g(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在四面体ABCD中,若AC=AD,∠BAC=∠BAD,则异面直线AB与CD所成角的大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{m}$=(cosx,sinx)和$\overrightarrow{n}$=($\sqrt{2}$-sinx,cosx),
(1)设f(x)=$\overrightarrow{m}•\overrightarrow{n}$,求函数y=f($\frac{π}{3}$-2x)的单调区间;
(2)若x∈[π,2π],求|$\overrightarrow{m}$-$\overrightarrow{n}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若抛物线y2=ax的焦点到准线的距离为4,则此抛物线的焦点坐标为(±2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\sqrt{lo{g}_{\frac{1}{2}}(x-1)-1}$的定义域为(0,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an},观察程序框图,若k=5,k=10时,分别有S=25,S=100.
(1)试求数列{an}的通项;
(2)令${b_n}=n{2^{a_n}}$,求{bn}的前n项和Tn的值.

查看答案和解析>>

同步练习册答案