【题目】已知函数,
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对任意恒成立,求实数的取值范围.
【答案】解:(Ⅰ)函数在上单调递减,在, 上单调递增. (Ⅱ)
【解析】试题分析:(Ⅰ)当时, ,求导因式分解可得单调区间;
(2)利用导数将不等式恒成立问题转化为对单调性的讨论,再利用单调性求解参数范围.
试题解析:(Ⅰ)当时,
则,
此时:函数在上单调递减,在, 上单调递增.
(Ⅱ)依题意有:
,
令,
得: ,
①当即时,
函数在恒成立,
则在单调递增,
于是,
解得: ;
②当即时,
函数在单调递减,在单调递增,
于是,不合题意,
此时: ;
综上所述:实数的取值范围是
点晴:本题主要考查函数单调性,不等式恒成立问题.要求单调性,求导比较导方程的根的大小,解不等式可得单调区间,要证明不等式恒成立问题可转化为构造新函数证明新函数单调,只需要证明其导函数大于等于0(或者恒小于等于0即可),要证明一个不等式,我们可以先根据题意构造新函数,求其值最值即可.
科目:高中数学 来源: 题型:
【题目】如图,在矩形中,已知,点、分别在、上,且,将四边形沿折起,使点在平面上的射影在直线上.
(I)求证: ;
(II)求点到平面的距离;
(III)求直线与平面所成的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足asinA-csinC=b(sinA-sinB).
(Ⅰ)求角C的大小;
(Ⅱ)若边长c=4,求△ABC的周长最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)
(1)求函数g(x)的极大值;
(2)求证:1+++…+>ln(n+1)(n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+x2+x(0<a<1,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某上市股票在30天内每股的交易价格(元)与时间(天)组成有序数对,点落在图中的两条线段上.
该股票在30天内的日交易量(万股)与时间(天)的部分数据如下表所示:
第天 | 4 | 10 | 16 | 22 |
(万股) | 36 | 30 | 24 | 18 |
(1)根据提供的图象,写出该股票每股交易价格(元)与时间(天)所满足的函数关系式;
(2)根据表中数据,写出日交易量(万股)与时间(天)的一次函数关系式;
(3)用(万元)表示该股票日交易额,写出关于的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com