精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若对任意恒成立,求实数的取值范围.

【答案】解:(Ⅰ)函数上单调递减,在 上单调递增. (Ⅱ)

【解析】试题分析:(Ⅰ)当时, ,求导因式分解可得单调区间;

(2)利用导数将不等式恒成立问题转化为对单调性的讨论,再利用单调性求解参数范围.

试题解析:(Ⅰ)当时,

此时:函数上单调递减,在 上单调递增.

(Ⅱ)依题意有:

得:

①当时,

函数恒成立,

单调递增,

于是

解得:

②当时,

函数单调递减,在单调递增,

于是,不合题意,

此时:

综上所述:实数的取值范围是

点晴:本题主要考查函数单调性,不等式恒成立问题.要求单调性,求导比较导方程的根的大小,解不等式可得单调区间,要证明不等式恒成立问题可转化为构造新函数证明新函数单调,只需要证明其导函数大于等于0(或者恒小于等于0即可),要证明一个不等式,我们可以先根据题意构造新函数,求其值最值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,已知,点分别在上,且,将四边形沿折起,使点在平面上的射影在直线上.

(I)求证:

(II)求点到平面的距离;

(III)求直线与平面所成的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,内角A,B,C所对的边分别为abc,且满足asinA-csinC=b(sinA-sinB).

(Ⅰ)求角C的大小;

(Ⅱ)若边长c=4,求△ABC的周长最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)

(1)求函数g(x)的极大值;

(2)求证:1++…+>ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在实数a,使得函数y=sin2x+acosx+a-在闭区间[0,]上的最大值是1?若存在,则求出对应的a的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3x2x(0<a<1,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图: 所在平面外一点, 平面.求证:

(1)的垂心;

(2)为锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形中,相交于点平面.

(1)求证:平面

(2)当直线与平面所成角的大小为时,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某上市股票在30天内每股的交易价格(元)与时间(天)组成有序数对,点落在图中的两条线段上.

该股票在30天内的日交易量(万股)与时间(天)的部分数据如下表所示:

4

10

16

22

(万股)

36

30

24

18

(1)根据提供的图象,写出该股票每股交易价格(元)与时间(天)所满足的函数关系式;

(2)根据表中数据,写出日交易量(万股)与时间(天)的一次函数关系式;

(3)用(万元)表示该股票日交易额,写出关于的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?

查看答案和解析>>

同步练习册答案