精英家教网 > 高中数学 > 题目详情

【题目】某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.
(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?

是否优良
班级

优良(人数)

非优良(人数)

合计

合计


(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选2人来作书面发言,求2人都来自甲班的概率. 下面的临界值表供参考:

P(x2k)

0.10

0.05

0.010

k

2.706

3.841

6.635

(以下临界值及公式仅供参考 ,n=a+b+c+d)

【答案】
(1)解:根据题意,填写2×2列联表如下;

是否优良

班级

优良

(人数)

非优良

(人数)

合计

30

30

60

20

40

60

合计

50

70

120

计算

则有90%的把握认为学生成绩优良与班级有关


(2)解:分层抽样甲班抽取了3人,记作a1,a2,a3,乙班抽取了2人,记作b1,b2

从中任意抽取2人,有{a1,a2},{a1,a3},{a1,b1},{a1,b2},

{a2,a3},{a2,b1},{a2,b2},{a3,b1},{a3,b2},{b1,b2}10种情形,

其中2人都来自甲班的有3种情形,

则至少有2人来自甲班的概率为P=


【解析】(1)根据所给数据可得列联表,利用公式计算K2的值,对照临界值即可得结论;(2)利用分层抽样原理与列举法计算基本事件数,求出对应的概率值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在底面是正方形的四棱锥ABCD,BDAC于点E,FPC中点,GAC上一点.

(1)求证:

(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由;

(3)当二面角的大小为时,求PC与底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象过点.

(1)求的值并求函数的值域;

(2)若关于的方程有实根,求实数的取值范围;

(3)若函数,则是否存在实数,使得函数的最大值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:2xay+4=0与直线l2平行,且l2过点(2,-2),并与坐标轴围成的三角形面积为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的图象上相邻两对称轴的距离为.

(1)若,求的递增区间;

(2)若时,若的最大值与最小值之和为5,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数轴左侧的图象,如图所示,请根据图象.

)写出函数的增区间.

)写出函数的解析式.

)若函数,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足:对任意的x1 , x2∈(﹣∞,0),有 ,则(
A.f(﹣4)<f(3)<f(﹣2)
B.f(﹣2)<f(3)<f(﹣4)
C.f(3)<f(﹣2)<f(﹣4)
D.f(﹣4)<f(﹣2)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某城市气象部门的数据中,随机抽取了100天的空气质量指数的监测数据如表:

空气质量指数t

(0,50]

(50,100]

(100,150]

(150,200]

(200,300]

(300,+∞)

质量等级

轻微污染

轻度污染

中度污染

严重污染

天数K

5

23

22

25

15

10


(1)在该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t(t取整数)存在如下关系y= ,且当t>300时,y>500估计在某一医院收治此类病症人数超过200人的概率;
(2)若在(1)中,当t>300时,y与t的关系拟合于曲线 ,现已取出了10对样本数据(ti , yi)(i=1,2,3,…,10),且 =42500, =500,求拟合曲线方程. (附:线性回归方程 =a+bx中,b= ,a= ﹣b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣1|+|x+1|,(x∈R)
(1)求证:f(x)≥2;
(2)若不等式f(x)≥ 对任意非零实数b恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案