【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C,△ABC的面积为6,求BC.
【答案】(Ⅰ)tanB=2;(Ⅱ)
【解析】
(I)利用正弦定理化简已知条件,求得的值.
(II)由的值求得的值,从而求得的值,利用正弦定理以及三角形的面积公式列方程,由此求得也即的值.
(Ⅰ)∵2a=2bcosC+csinB,利用正弦定理可得:2sinA=2sinBcosC+sinCsinB,又sinA=sin(B+C)=sinBcosC+cosBsinC,
化为:2cosB=sinB≠0,∴tanB=2.
(Ⅱ)∵tanB=2,B∈(0,π),可得sinB,cosB.
∴sinA=sin(B+C)=sinBcosC+cosBsinC.
∴,可得:a.又absin6,可得b.
∴a,即,解得=.
科目:高中数学 来源: 题型:
【题目】椭圆,椭圆上一点到左焦点的距离的取值范围为.
(1)求椭圆的方程;
(2),,,分别与椭圆相切,且,,,如图,,,,围成的矩形的面积记为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四边形ABCD中,BD为四边形的一条对角线,且,将沿BD向上翻折,当点A在平面BCD内的投影恰好为的外心E时,设直线AE与平面ABC,ACD,ABD的夹角分别为,,,则( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年9月25日.阿里巴巴在杭州云栖大会上正式对外发布了含光800AI芯片,在业界标准的ResNet -50测试中,含光800推理性能达到78563lPS,比目前业界最好的AI芯片性能高4倍;能效比500 IPS/W,是第二名的3.3倍.在国内集成电路产业发展中,集成电路设计产业始终是国内集成电路产业中最具发展活力的领域,增长也最为迅速.如图是2014-2018年中国集成电路设计产业的销售额(亿元)及其增速(%)的统计图,则下面结论中正确的是( )
A.2014-2018年,中国集成电路设计产业的销售额逐年增加
B.2014-2017年,中国集成电路设计产业的销售额增速逐年下降
C.2018年中国集成电路设计产业的销售额的增长率比2015年的高
D.2018年与2014年相比,中国集成电路设计产业销售额的增长率约为110%
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:().若,,,四点中有且仅有三点在椭面C上.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,F为椭圆C的右焦点,过点F的直线l分别与椭圆C交于M,N两点,,求证:直线,关于x轴对称.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方形ABCD中,AB=1,∠ABD=60°,现将长方形ABCD沿着对角线BD折起,使平面ABD⊥平面BCD,则折后几何图形的外接球表面积为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为射线交曲线C于点A,倾斜角为α的直线l过线段OA的中点B且与曲线C交于P、Q两点.
(1)求曲线C的直角坐标方程及直线l的参数方程;
(2)当直线l倾斜角α为何值时, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,四边形ABCD为等腰梯形,AB=4,AD=DC=CB=2,△ADC沿AC折起,使得平面ADC⊥平面ABC,E为AB的中点,连接DE,DB(如图2).
(1)求证:BC⊥AD
(2)求直线DE与平面BCD所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】口袋中有大小、形状、质地相同的两个白球和三个黑球.现有一抽奖游戏规则如下:抽奖者每次有放回的从口袋中随机取出一个球,最多取球2n+1(n)次.若取出白球的累计次数达到n+1时,则终止取球且获奖,其它情况均不获奖.记获奖概率为.
(1)求;
(2)证明:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com