精英家教网 > 高中数学 > 题目详情

【题目】已知分别为椭圆的左、右焦点,点关于直线对称的点Q在椭圆上,则椭圆的离心率为______;若过且斜率为的直线与椭圆相交于AB两点,且,则___.

【答案】

【解析】

根据对称性和中位线判断为等腰直角三角形,根据椭圆的定义求得离心率.根据得到,设出直线的方程,联立直线的方程和椭圆方程,根据根与系数关系列方程,解方程求得的值.

由于点关于直线对称的点Q在椭圆上,由于的倾斜角为,画出图像如下图所示,由于是坐标原点,根据对称性和中位线的知识可知为等腰直角三角形,且为短轴的端点,故离心率.不妨设,则椭圆方程化为,设直线的方程为,代入椭圆方程并化简得.,则①,.由于,故.解由①②③组成的方程组得,即.

故填:(1);(2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图象与函数h(x)x2的图象关于点A(0,1)对称.

(1)求函数f(x)的解析式;

(2)g(x)f(x)g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,,设其外接球的球心为O,已知三棱锥的体积为2.则球O的表面积的最小值是()

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某微信群主发60个随机红包(即每个人抢到的红包中的钱数是随机的,且每人只能抢一个),红包被一抢而空,后据统计,60个红包中的钱数(单位:元)分配如下频率分布直方图所示(其分组区间为.

1)求频率分布直方图中的值及红包钱数的平均值;

2)试估计该群中某成员抢到钱数不小于3元的概率;

3)若该群中成员甲、乙两人都抢到4.5元红包,现系统将从抢到4元及以上红包的人中随机抽取2人,求甲、乙至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,离心率为是椭圆上的一个动点,且面积的最大值为.

(1)求椭圆的方程;

(2)设直线斜率为,且与椭圆的另一个交点为,是否存在点,使得若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点P到两点的距离之差的绝对值等于.设点P的轨迹为C.

1)求C的轨迹方程;

2)过点的直线l与曲线C交于MN两点,且Q恰好为线段的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是线段上的动点,则下列说法错误的是( )

A. 当点移动至中点时,直线与平面所成角最大且为

B. 无论点上怎么移动,都有

C. 当点移动至中点时,才有相交于一点,记为点,且

D. 无论点上怎么移动,异面直线所成角都不可能是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位长度,再将所得函数图象上的所有点的横坐标缩短到原来的,得到函数的图象.已知函数的部分图象如图所示,则函数( )

A.最小正周期为,最大值为2

B.最小正周期为,图象关于点中心对称

C.最小正周期为,图象关于直线对称

D.最小正周期为,在区间单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系.己知直线的直角坐标方程为,曲线C的极坐标方程为

1)设t为参数,若,求直线的参数方程和曲线C的直角坐标方程;

2)已知:直线与曲线C交于AB两点,设,且依次成等比数列,求实数a的值.

查看答案和解析>>

同步练习册答案