精英家教网 > 高中数学 > 题目详情
4.在同一平面直角坐标系中经过伸缩变换$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后,曲线C变为曲线2x′2+8y′2=1,则曲线C的方程为(  )
A.25x2+36y2=1B.50x2+72y2=1C.10x2+24y2=1D.$\frac{{2{x^2}}}{25}+\frac{{8{y^2}}}{9}=1$

分析 把$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$代入曲线2x′2+8y′2=1,即可得出.

解答 解:把$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$代入曲线2x′2+8y′2=1,可得2(5x)2+8(3y)2=1,化为50x2+72y2=1,即为曲线C的方程.
故选:B.

点评 本题考查了曲线的变换公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2-2xsinθ+1有零点,则θ角的取值集合为{θ|θ=$\frac{π}{2}$+kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设[x]表示不大于x的最大整数,集合A={x|[x]2-2[x]=3},B={x|2x>8},则A∩B=(3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}满足a1+a2=-1,a3=4,则a4+a5=(  )
A.17B.16C.15D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,输出的y值为(  )
A.15B.17C.19D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个三棱锥的三视图如图(图中小正方形的边长为1),则这个三棱锥的体积是(  )
A.$\frac{32}{3}$B.8C.$\frac{20}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,则符合条件$|{\begin{array}{l}z&{1+i}\\{-i}&{2i}\end{array}}|=0$的复数z的共轭复数$\overline z$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.通过$\widehat{{e}_{1}}$,$\widehat{{e}_{2}}$,…,$\widehat{{e}_{n}}$来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分工称为(  )
A.回归分析B.独立性检验分析C.残差分析D.散点图分析

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,等腰梯形ABCD中,AB=4,BC=CD=2,若E、F分别是边BC、AB上的点,且满足$\frac{BE}{BC}$=$\frac{AF}{AB}$=λ,当$\overrightarrow{AE}$•$\overrightarrow{DF}$=0时,则有(  )
A.λ∈($\frac{1}{8}$,$\frac{1}{4}$)B.λ∈($\frac{1}{4}$,$\frac{3}{8}$)C.λ∈($\frac{3}{8}$,$\frac{1}{2}$)D.λ∈($\frac{1}{2}$,$\frac{5}{8}$)

查看答案和解析>>

同步练习册答案