精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的长轴长为4,且短轴长是长轴长的一半.

(1)求椭圆的方程;

(2)经过点作直线,交椭圆于两点.如果恰好是线段的中点,求直线的方程.

【答案】(1);(2)

【解析】

1)根据题意,由椭圆的几何性质分析可得ab的值,将ab的值代入椭圆方程即可得答案;

2)根据题意,设直线l的方程为:,将直线与椭圆的方程联立,分析可得,设Ax1y1),Bx2y2),由根与系数的关系以及中点坐标公式分析可得,解可得k的值,代入直线方程即可得答案.

(1)根据题意,椭圆的长轴长为4,且短轴长是长轴长的一半.

,则

,则

故椭圆的方程为

(2)由(1)得故椭圆的方程为:,设直线l的方程为:

将直线代入椭圆方程,得

,则

恰好是线段的中点,,即

解得

则直线的方程为,变形可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根),称为的特征根.

(1)讨论函数的奇偶性,并说明理由;

(2)已知为给定实数,求的表达式;

(3)把函数的最大值记作,最小值记作,研究函数的单调性,令,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x-1|+|x-2a|.

(1)a=1时,求f(x)≤3的解集;

(2)x[1,2]时,f(x)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P12),根据下列条件分别求出直线l的方程(斜截式方程):

1)直线l垂直;

2lx轴、y轴上的截距之和等于0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)讨论函数的单调区间;

(2)当时,恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数的导函数的图象如图所示,则以下关于函数的判断:

①在区间内单调递增;

②在区间内单调递减;

③在区间内单调递增;

是极小值点;

是极大值点.

其中正确的是( )

A. ③⑤B. ②③C. ①④⑤D. ①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若k≠0,试讨论函数fx)的奇偶性,并说明理由;

2)已知fx)在(﹣0]上单调递减,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面,且是边长为2的等边三角形,

(1)若是线段的中点,证明:直线

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)若直角三角形两直角边长之和为12,求其周长的最小值;

(2)若三角形有一个内角为,周长为定值,求面积的最大值;

(3)为了研究边长满足的三角形其面积是否存在最大值,现有解法如下:(其中, 三角形面积的海伦公式),

,则

但是,其中等号成立的条件是,于是矛盾,

所以,此三角形的面积不存在最大值.

以上解答是否正确?若不正确,请你给出正确的答案.

查看答案和解析>>

同步练习册答案