【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示
(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对,两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
使用寿命 材料类型 | 个月 | 个月 | 个月 | 个月 | 总计 |
如果你是甲公司的负责人,你会选择采购哪款新型材料?
参考数据:,.参考公式:回归直线方程为,其中 .
【答案】(1) , 百万元;(2) 型新材料.
【解析】
(1)根据所给的数据,做出变量的平均数,求出最小二乘法所需要的数据,可得线性回归方程的系数,再根据样本中心点一定在线性回归方程上,求出的值,写出线性回归方程;将代入所求线性回归方程,求出对应的的值即可得结果; (2)求出型新材料对应产品的使用寿命的平均数与型新材料对应产品的使用寿命的平均数,比较其大小即可得结果.
(1)由折线图可知统计数据共有组,
即,,,,,,
计算可得,
所以 ,
,
所以月度利润与月份代码之间的线性回归方程为.
当时,.
故预计甲公司2019年3月份的利润为百万元.
(2)型新材料对应产品的使用寿命的平均数为,型新材料对应的产品的使用寿命的平均数为, 应该采购型新材料.
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形中,,,为边的中点,将沿直线翻折成,设为线段的中点.则在翻折过程中,给出如下结论:
①当不在平面内时,平面;
②存在某个位置,使得;
③线段的长是定值;
④当三棱锥体积最大时,其外接球的表面积为.
其中,所有正确结论的序号是______.(请将所有正确结论的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为助力湖北新冠疫情后的经济复苏,某电商平台为某工厂的产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:
单价(元/件) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量(万件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)根据以上数据,求关于的线性回归方程;
(2)若该产品成本是4元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润?
(参考公式:回归方程,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面,底面为平行四边形,,且,,是棱的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)求直线的极坐标方程和曲线的参数方程;
(2)若,直线与曲线交于两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com