精英家教网 > 高中数学 > 题目详情

【题目】某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下):

(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一全年级中“体育良好”的学生人数;

(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;

(Ⅲ)假设甲、乙、丙三人的体育成绩分别为且分别在三组中,其中当数据的方差最小时,写出的值.(结论不要求证明)

(注: ,其中为数据的平均数)

【答案】(Ⅰ)750人;(Ⅱ) ;(Ⅲ) .

【解析】试题分析(Ⅰ)由折线图求出样本中体育成绩大于或等于70分的学生人数,由此能求出该校高一年级学生中,体育良好的学生人数;(Ⅱ)设至少有1人体育成绩在[6070为事件,由对立事件概率计算公式能求出至少有1人体育成绩在[6070)的概率;(由题意,能写出数据的方差最小时, 的值.

试题解析:(Ⅰ)体育成绩大于或等于70分的学生有30人,1000

“体育良好”大约为750人.

(Ⅱ)设至少有1人体育成绩在[6070为事件,总共有种组合,则.

(Ⅲ)∵甲、乙、丙三人的体育成绩分别为,且分别在三组中,其中.

∴当数据的方差最小时, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣mx+m,m∈R.
(1)求函数f(x)的单调区间.
(2)若f(x)≤0在x∈(0,+∞)上恒成立,求实数m的取值范围.
(3)在(2)的条件下,任意的0<a<b,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax﹣1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为﹣1.
(1)求a的值及函数y=f(x)的单调区间;
(2)若x1<ln2,x2>ln2,且f(x1)=f(x2),证明:x1+x2<2ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={x|x2<2x},集合B={x|x< },则A∩(RB)等于(
A.(﹣2, ]
B.(2,+∞)
C.(﹣∞, ]
D.D[ ,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0, ),则函数g(x)=cos(2x﹣φ)的图象(
A.关于点( ,0)对称
B.可由函数f(x)的图象向右平移 个单位得到
C.可由函数f(x)的图象向左平移 个单位得到
D.可由函数f(x)的图象向左平移 个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左顶点在圆上.

)求椭圆的方程;

)若点为椭圆上不同于点的点,直线与圆的另一个交点为.是否存在点,使得? 若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,△ABD是边长为2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=

(1)求证:PA⊥BD;
(2)若PC=BC,求二面角A﹣BP﹣D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是( )

A. 时,函数是增函数,因为,所以是增函数,这种推理是合情合理.

B. 在平面中,对于三条不同的直线 ,若 ,将此结论放在空间中也是如此,这种推理是演绎推理.

C. 命题 的否定是 .

D. 若分类变量的随机变量的观察值越小,则两个分类变量有关系的把握性越小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C底面ABC

(1)若DBC的中点,求证:ADCC1

(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1侧面BB1C1C

查看答案和解析>>

同步练习册答案