精英家教网 > 高中数学 > 题目详情

【题目】已知0<k<4,直线l1:kx﹣2y﹣2k+8=0和直线l:2x+k2y﹣4k2﹣4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为

【答案】
【解析】解:如图所示:
直线l1:kx﹣2y﹣2k+8=0 即k(x﹣2)﹣2y+8=0,过定点B(2,4),
与y 轴的交点C(0,4﹣k),
直线l:2x+k2y﹣4k2﹣4=0,即 2x﹣4+k2 (y﹣4)=0,
过定点(2,4 ),与x 轴的交点A(2 k2+2,0),
由题意知,四边形的面积等于三角形ABD的面积和梯形 OCBD的面积之和,
故所求四边形的面积为 ×4×(2 k2+2﹣2)+ =4k2﹣k+8,
∴k= 时,所求四边形的面积最小,
所以答案是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;命题q:函数f(x)=lagax在(0,+∞)上递增,若p∨q为真,而p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列所给4个图象中,与所给3件事吻合最好的顺序为( )
(1)小明离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
(2)小明骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
(3)小明出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.

A.(4)(1)(2)
B.(4)(2)(3)
C.(4)(1)(3)
D.(1)(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:y=4x和点P(6,4),点A为第一象限内的点且在直线l上,直线PA交x轴正半轴于点B,
(1)当OP⊥AB时,求AB所在直线的直线方程;
(2)求△OAB面积的最小值,并求当△OAB面积取最小值时的B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},
(1)若a=10,求A∩B;
(2)求能使AB成立的a值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣alnx+ (a∈R) (Ⅰ)求函数f(x)单调区间;
(Ⅱ)若a=﹣1,求证:当x>1时,f(x)< x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +a(a∈R)为奇函数
(1)求a的值;
(2)当0≤x≤1时,关于x的方程f(x)+1=t有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在英国的某一娱乐节目中,有一种过关游戏,规则如下:转动图中转盘(一个圆盘四等分,在每块区域内分别标有数字1,2,3,4),由转盘停止时指针所指数字决定是否过关.在闯关时,转次,当次转得数字之和大于时,算闯关成功,并继续闯关,否则停止闯关,闯过第一关能获得10欧元,之后每多闯一关,奖金翻倍,假设每个参与者都会持续闯关到不能过关为止,并且转盘每次转出结果相互独立.

(1)求某人参加一次游戏,恰好获得10欧元的概率;

(2)某人参加一次游戏,获得奖金欧元,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈[1,2],x2≥a;命题q:x∈R,x2+2ax+2﹣a=0,若命题p∧q是真命题,则实数a的取值范围是(
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1

查看答案和解析>>

同步练习册答案