精英家教网 > 高中数学 > 题目详情
已知双曲线的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为   
【答案】分析:设A点是斜率为正的渐近线与右准线的交点,进而根据双曲线方程求得渐近线方程和右准线方程,进而把这两个方程联立求得点A的坐标,△OAF的面积以OF为底边计算的话,其上的高就是A点的纵坐标的绝对值,即:,进而表示出△OAF的面积建立等式求得a=b,进而可知双曲线渐近线的斜率,可知其垂直,进而可推出答案.
解答:解:设A点是斜率为正的渐近线与右准线的交点
双曲线斜率为正的渐近线方程为:y=x
而右准线为:x=
于是,渐近线与右准线的交点A,其横坐标就是,纵坐标可求出是:
y=
△OAF的面积若是以OF为底边计算的话,其上的高就是A点的纵坐标的绝对值,即:
∴S△OAF=|OF|•==
由题意有:=
∴a=b
∴双曲线两条渐近线就是:y=±x
∴两条渐近线相互垂直
∴它们的夹角很容易得出是90°
故答案为90°
点评:本题主要考查了双曲线的简单性质.从近三年高考情况看,圆锥曲线的定义、方程和性质仍是高考考查的重点内容,平时应注意多积累.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,则此双曲线的标准方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①当a为任意实数时,直线(a-1)x-y+2a+1=0恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是x2=
4
3
y

②已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,则双曲线的标准方程是
x2
5
-
y2
20
=1

③抛物线y=ax2(a≠0)的准线方程为y=-
1
4a

④已知双曲线
x2
4
+
y2
m
=1
,其离心率e∈(1,2),则m的取值范围是(-12,0).
其中所有正确结论的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的右焦点为F(3,0),且以直线x=1为右准线.求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中所有正确命题的序号为
①②
①②

①当a为任意实数时,直线(a-1)x-y+2a+1=0恒过定点P(-2,3);
②已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,则双曲线的标准方程是
x2
5
-
y2
20
=1

③抛物线y=ax2(a≠0)的焦点坐标为(
1
4a
,0
);
④曲线C:
x2
4-k
+
y2
k-1
=1
不可能表示椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的右焦点为F,过F作双曲线一条渐近线的垂线,垂足为A,过A作x轴的垂线,B为垂足,且
OF
=3
OB
(O为原点),则此双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案