精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1) 判断的奇偶性并证明;

(2)

①判断的单调性(不必说明理由);

②是否存在,使得在区间的值域为?若存在,求出此时的取值范围;若不存在,请说明理由.

【答案】(1)奇函数,证明见解析;(2)①单调递减,②

【解析】

(1)根据函数奇偶性的定义,即可证出.

(2) ①求出,由复合函数的单调性法则可知,上单调递减;②根据上单调递减,可以得到,然后转化得出:是方程的两根,再将其转化为直线与函数的图象在

上有两个交点,观察图象,可求出的取值范围.

是奇函数;证明如下:

解得,

所以的定义域为,关于原点对称.

,

为奇函数

,①上单调递减.

②假设存在,使的值域为

知,上单调递减.

则有,

所以,是方程上的两根,

整理得2个不等根

,令,则

即直线与函数的图象在上有两个交点,

所以,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】国家射击队的某队员射击一次,命中7~10环的概率如表所示:

命中环数

10环

9环

8环

7环

概率

0.32

0.28

0.18

0.12

求该射击队员射击一次 求:

(1)射中9环或10环的概率;

(2)至少命中8环的概率;(3)命中不足8环的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为定义在上的奇函数,且当时,.

1)求函数的解析式;

2)求实数,使得函数在区间上的值域为

3)若函数在区间上的值域为,则记所有满足条件的区间的并集为,设,问是否存在实数,使得集合恰含有个元素?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜三棱柱的侧面与底面垂直,,且,求:

1)侧棱与底面所成角的大小;

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式。最新调查表明,人们对于投资理财的兴趣逐步提高。某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下:

①投资产品的收益与投资额的算术平方根成正比;

②投资产品的收益与投资额成正比.

公司提供了投资1万元时两种产品的收益,分别是0.4万元和0.2万元。

(1) 分别求出产品的收益产品的收益与投资额的函数关系式;

(2) 假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 .

(1)若分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6),先后抛掷两次时第一次、第二次出现的点数,求满足的概率;

(2)若在连续区间上取值,求满足的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

项目

男性

女性

总计

反感

10

不反感

8

总计

30

已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.

(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?

(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.

附:K2

.

P(K2≥k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45/m,新墙的造价为180/m,设利用的旧墙的长度为x(单位:元)。

)将y表示为x的函数;

)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数具有以下性质:上是减函数,在上是增函数.

1)若上是增函数,求实数的取值范围;

2)若,求的值域和单调区间.

查看答案和解析>>

同步练习册答案