已知椭圆经过点
,
.
(Ⅰ)求椭圆的方程;(Ⅱ)设
为椭圆
上的动点,求
的最大值.
科目:高中数学 来源: 题型:解答题
在直角坐标系中,已知中心在原点,离心率为
的椭圆E的一个焦点为圆
的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线
,当直线
都与圆
相切时,求P点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知椭圆的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
,直线l的方程为:
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线l与椭圆相交于
、
两点
①若线段中点的横坐标为
,求斜率
的值;
②已知点,求证:
为定值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点坐标为
,过
的直线交抛物线
于
两点,直线
分别与直线
:
相交于
两点.
(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点在轴上,且过点
.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆相切的直线
交抛物线于不同的两点
若抛物线上一点
满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为原点,长轴长为
,一条准线的方程为
.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)射线与椭圆的交点为
,过
作倾斜角互补的两条直线,分别与椭圆交于
两点(
两点异于
).求证:直线
的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线与双曲线
有公共焦点
,点
是曲线
在第一象限的交点,且
.
(Ⅰ)求双曲线的方程;
(Ⅱ)以双曲线的另一焦点
为圆心的圆
与直线
相切,圆
:
.过点
作互相垂直且分别与圆
、圆
相交的直线
和
,设
被圆
截得的弦长为
,
被圆
截得的弦长为
,问:
是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的左焦点为
,离心率为
,过点
且与
轴垂直的直线被椭圆截得的线段长为
.
(1) 求椭圆方程.
(2) 过点的直线
与椭圆交于不同的两点
,当
面积最大时,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com