已知椭圆经过点,.
(Ⅰ)求椭圆的方程;(Ⅱ)设为椭圆上的动点,求的最大值.
科目:高中数学 来源: 题型:解答题
在直角坐标系中,已知中心在原点,离心率为的椭圆E的一个焦点为圆的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线,当直线都与圆相切时,求P点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为,直线l的方程为:
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线l与椭圆相交于、两点
①若线段中点的横坐标为,求斜率的值;
②已知点,求证:为定值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点坐标为,过的直线交抛物线于两点,直线分别与直线:相交于两点.
(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点在轴上,且过点.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为原点,长轴长为,一条准线的方程为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆交于 两点(两点异于).求证:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.
(Ⅰ)求双曲线的方程;
(Ⅱ)以双曲线的另一焦点为圆心的圆与直线相切,圆:.过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.
(1) 求椭圆方程.
(2) 过点的直线与椭圆交于不同的两点,当面积最大时,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com