精英家教网 > 高中数学 > 题目详情
(2010•武汉模拟)M为△ABC内一点,过点M的一直线交AB边于P,交AC边于点Q,且满足“
AB
AP
+
AC
AQ
=3
”那么M一定是△ABC的(  )
分析:先考察两种特殊情形:当P与B重合时,当Q与C重合时,直线BM和CM都过三角形某一边的中点,再根据三角形中线段长度之间的等量关系判断出直线AM过BC边中点F,从而得出正确答案.
解答:解:∵P为AB边上(除A外)的任意一点,所以当P与B重合时,
可得,
AB
AB
+
AC
AQ
=3

AC
AQ
=2

此时Q为AC边中点,
即直线BM过AC边中点.
同理,因为Q为AC边上(除A外)的任意一点
∴当Q与C重合时,可得,
AB
AP
+
AC
AC
=3

AB
AP
=2
,此时P为AB边中点,
即直线CM过AB边中点;
设D为AC边中点,E为AB边中点,连接ED,直线AM分别交ED、BC于G、F,
∵ED是△ABC的一条中位线,
EG
BF
=
AE
AB
=
1
2

EG
FC
=
EM
MC
=
DM
MB
=
ED
BC
=
1
2

EG
BF
=
EG
FC
=
1
2

∴BF=FC
∵BF=FC,
∴F为BC边上中点,因为直线BM过AC边中点D,直线CM过AB边中点E,直线AM过BC边中点F,
∴M为△ABC的重心.
故选A.
点评:本题主要考查了三角形的重心问题.解决三角形的重心问题要注意三角形的重心满足的性质:到顶点距离等于到对边中点的2倍.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•武汉模拟)函数t=f(x+2)的图象过点P(-1,3),则函数y=f(x)的图象关于原点O对称的图象一定过点
(-1,-3)
(-1,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)已知数列{an}满足an+1=
1+an
3-an
(n∈N*),且a1=0

(1)求a2,a3
(2)若存在一个常数λ,使得数列{
1
an
}
为等差数列,求λ值;
(3)求数列{an}通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)若cosα=
3
5
,-
π
2
<α<0,则tanα
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)“数列{an}为等比数列”是“数列{an+an+1}为等比数列”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)两直线2x+y+2=0与ax+4y-2=0垂直,则其交点坐标为
(-1,0)
(-1,0)

查看答案和解析>>

同步练习册答案