精英家教网 > 高中数学 > 题目详情
精英家教网如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,⊙O是△BDE的外接圆.
(1)求证:AC是⊙O的切线;
(2)如果,AD=6,AE=6
2
,求BC的长.
分析:(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;
(2)先利用切割线定理可求出半径OD,容易证出△AED∽△ABE;设DE=
2
x,BE=2x,利用相似比,结合勾股定理可求x,从而求出BC的长.
解答:精英家教网(1)证明:连接OE;
∵⊙O是△BDE的外接圆,∠DEB=90°,
∴BD是⊙O的直径,
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠OEB=∠CBE,
∴OE∥BC,
∵∠C=90°,
∴∠AEO=90°,
∴AC是⊙O的切线;
解:(2)∵AE是⊙O的切线,
AD=6,AE=6
2

∴AE2=AD•AB,
∴AB=
AE2
AD
=
(6
2
)
2
6
=12,
∴BD=AB-AD=12-6=6;
∵∠AED=∠ABE,∠A=∠A,
∴△AED∽△ABE,
DE
BE
=
AE
AB
2
2

设DE=
2
x,BE=2x,
∵DE2+BE2=BD2
∴2x2+4x2=36,
解得x=±
6
(负的舍去),
∴BE=2
6
,DE=2
3
,BC=4
点评:本题利用了平行线的性质、切线的判定、切割线定理、相似三角形的判定和性质、勾股定理等知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案