精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)是定义在R上的偶函数,当x≥0时.f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,0≤x≤2}\\{f(x-1),x>2}\end{array}\right.$,若函数g(x)=f(x)-k(x-1)恰有4个不同的零点,则实数k的取值范围是(  )
A.[-$\frac{3}{4}$,-$\frac{3}{5}$)∪($\frac{3}{5}$,$\frac{3}{4}$]B.[-1,-$\frac{3}{4}$)∪($\frac{3}{4}$,1]C.($\frac{3}{5}$,$\frac{3}{4}$]D.[-$\frac{3}{4}$,-$\frac{3}{5}$)

分析 根据条件作出函数f(x)的图象,利用数形结合建立h(x)=k(x-1)与f(x)的大小关系即可得到结论.

解答 解:当2<x≤3时,1<x-1≤2,
则f(x)=f(x-1)=|(x-1)2-1|,
∵函数f(x)是偶函数,作出函数f(x)的图象如图:

要使f(x)=k(x-1)恰有4个不同的根,则满足直线在A、B(包含A,不包含B)之间或C、D(包含C,不包含D)之间,
A点时k=$\frac{3}{4}$,B点时k=$\frac{3}{5}$,C点时k=-$\frac{3}{4}$,D点时k=-$\frac{3}{5}$
∴$\frac{3}{5}$<k≤$\frac{3}{4}$,或-$\frac{3}{4}$≤k<-$\frac{3}{5}$,
故选:A.

点评 本题主要考查函数与方程的应用,作出函数的图象,利用数形结合是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.将函数图象y=4sin(6x+$\frac{3π}{5}$)上所有点的横坐标变为原来的3倍,再向右平移$\frac{π}{5}$个单位长度,得到函数y=g(x)的图象,则函数y=g(x)图象的对称轴方程是x=$\frac{kπ}{2}$+$\frac{3π}{20}$,k∈Z..

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

若当时,不等式恒成立,则实数的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$,(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆M的方程为ρ2-6ρsinθ=-8.
(1)求圆M的直角坐标方程;
(2)若直线l截圆M所得弦长为$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的参数方程是$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A,B的极坐标分别为A(2,π),$B(2,\frac{4π}{3})$.
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)设M为曲线C上的动点,求点M到直线AB距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图是一个物体的三视图,根据图中尺寸(单位:cm),它的体积为32+8πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个几何体的三视图如图所示,正视图与俯视图为全等的等腰三角形,侧视图由半圆和等腰直角三角形组成,则该几何体的体积为$\frac{π+2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x2+y2=1,则x2+xy+2y2的最大值与最小值分别为$\frac{3}{2}$+$\frac{\sqrt{2}}{2}$,$\frac{3}{2}$-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点(0,$\sqrt{3}}$),离心率为$\frac{1}{2}$,左,右焦点分别为F1(-c,0),F2(c,0).
(1)求椭圆C的方程;
(2)若直线l:y=-$\frac{1}{2}$x+m与椭圆交于A,B两点,与圆x2+y2=c2交于C,D两点,且满足:|AB|=$\frac{{5\sqrt{3}}}{4}$|CD|,求直线l的方程.

查看答案和解析>>

同步练习册答案