精英家教网 > 高中数学 > 题目详情
7.在锐角三角形ABC中,a,b,c分别是角A,B,C的对边,向量$\overrightarrow{m}$=(cosC,2b-c),向量$\overrightarrow{n}$=(cosA,a),且$\overrightarrow{m}$∥$\overrightarrow{n}$
(Ⅰ)求角A的大小;
(Ⅱ)求函数f(C)=2sin2C+cos($\frac{π}{3}$-2C)的值域.

分析 (I)由$\overrightarrow{m}$∥$\overrightarrow{n}$,可得(2b-c)cosA-acosC=0,再利用正弦定理、和差公式即可得出;
(II)利用倍角公式与和差公式可得:f(C)=$sin(2C-\frac{π}{6})$+1,由A=$\frac{π}{3}$,$B=\frac{2π}{3}-C$$<\frac{π}{2}$,$0<C<\frac{π}{2}$,可得$\frac{π}{6}$<C$<\frac{π}{2}$,即可得出.

解答 解:(I)∵$\overrightarrow{m}$∥$\overrightarrow{n}$,∴(2b-c)cosA-acosC=0,
由正弦定理可得:2sinBcosA-sinCcosA-sinAcosC=0,
∴2sinBcosA=sin(C+A)=sinB≠0,
化为cosA=$\frac{1}{2}$,$A∈(0,\frac{π}{2})$,
解得A=$\frac{π}{3}$.
(II)f(C)=2sin2C+cos($\frac{π}{3}$-2C)=1-cos2C+$\frac{1}{2}cos2C+$$\frac{\sqrt{3}}{2}$sin2C=$sin(2C-\frac{π}{6})$+1,
∵A=$\frac{π}{3}$,
∴$B=\frac{2π}{3}-C$$<\frac{π}{2}$,$0<C<\frac{π}{2}$,
解得$\frac{π}{6}$<C$<\frac{π}{2}$,
$\frac{π}{6}$<2C$-\frac{π}{6}$<$\frac{5π}{6}$,
∴$sin(2C-\frac{π}{6})$∈$(\frac{1}{2},1]$.
∴f(C)∈$(\frac{3}{2},2]$.

点评 本题考查了三角函数的化简、倍角公式、和差公式、正弦定理、三角函数的单调性值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.抛物线y=2x2的焦点坐标是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,0)C.(0,$\frac{1}{8}$)D.($\frac{1}{8}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,求|$\overrightarrow{a}$-$\overrightarrow{b}$|的取值范围[1,7].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线y=$\sqrt{3}$(x-2)与抛物线C:y2=8x相交于A,B两点,点F为C的焦点,若$\overrightarrow{AF}$=$λ\overrightarrow{FB}$(|$\overrightarrow{AF}$|>|$\overrightarrow{FB}$|)则λ=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A(8,-5)和B(0,b)的距离为17,则b的值为(  )
A.10B.-20C.-20或10D.20或-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-3,4),则3$\overrightarrow{a}$-2$\overrightarrow{b}$的坐标是(9,-14).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设点M为△ABC的三条中线的交点,O为△ABC所在平面内任意一点,证明:$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=3$\overrightarrow{OM}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,已知a:b:c=3:5:4,则△ABC最大角的余弦值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知两个单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$满足$\overrightarrow{{e}_{1}}$⊥($\sqrt{2}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$),则单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案