精英家教网 > 高中数学 > 题目详情
1.如图,OABC是四面体,G是△ABC的重心,G2是OG上一点,且OG=3OG1,则(  )
A.$\overrightarrow{O{G_1}}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$B.$\overrightarrow{O{G_1}}=\frac{1}{9}\overrightarrow{OA}+\frac{1}{9}\overrightarrow{OB}+\frac{1}{9}\overrightarrow{OC}$
C.$\overrightarrow{O{G_1}}=\frac{1}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$D.$\overrightarrow{O{G_1}}=\frac{3}{4}\overrightarrow{OA}+\frac{3}{4}\overrightarrow{OB}+\frac{3}{4}\overrightarrow{OC}$

分析 利用空间向量加法法则求解.

解答 解:∵OABC是四面体,G是△ABC的重心,G2是OG上一点,且OG=3OG1
∴$\overrightarrow{O{G}_{1}}$=$\frac{1}{3}\overrightarrow{OG}$=$\frac{1}{3}$($\overrightarrow{OA}+\overrightarrow{AG}$)=$\frac{1}{3}\overrightarrow{OA}$+$\frac{1}{3}$[$\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$]
=$\frac{1}{3}\overrightarrow{OA}$+$\frac{1}{9}$($\overrightarrow{OB}-\overrightarrow{OA}$)+$\frac{1}{9}$($\overrightarrow{OC}-\overrightarrow{OA}$)=$\frac{1}{9}\overrightarrow{OA}+\frac{1}{9}\overrightarrow{OB}+\frac{1}{9}\overrightarrow{OC}$.
故选:B.

点评 本题考查向量的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,四边形 ABCD是平行四边形,AB=1,AD=2,AC=$\sqrt{3}$,E 是 AD的中点,BE与AC 交于点F,GF⊥平面ABCD.
(1)求证:AB⊥面AFG;
(2)若四棱锥G-ABCD 的体积为$\frac{{\sqrt{3}}}{6}$,求B 到平面ADG 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)是定义在R上的奇函数,有以下四个推断:
(1)f(0)=0;
(2)若f(-2)=1,则f(2)=1;
(3)若f(x)在[1,+∞)上为减函数,则f(x)在(-∞,-1]上为增函数;
(4)若f(x)在(0,+∞)上有最小值-m,则f(x)在(-∞,0)上有最大值m.
其中推断正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a,b∈R,若点M(1,2)在矩阵A=$[\begin{array}{l}{a}&{1}\\{b}&{4}\end{array}]$对应的变换作用下得到点N(2,-7),求矩阵A的特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,则输出y的值为(  )
A.5B.11C.23D.47

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若关于的方程$\sqrt{4-{x^2}}-kx+2k-3=0$有且只有一个实数根,则实数k的取值范围为0<k<$\frac{3}{4}$或k=$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果直线x=ky-1与圆C:x2+y2+kx+my+2p=0相交,且两个交点关于直线y=x对称,那么实数p的取值范围是(  )
A.$({-∞,-\frac{3}{2}})$B.$({-∞,-\frac{3}{4}})$C.$({-\frac{3}{4},+∞})$D.$({-\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{an}的通项an是关于x的不等式x2-x<nx(n∈N*)的解集中的整数个数,则数列{an}的前n项和Sn=(  )
A.n2B.n(n+1)C.$\frac{n(n+1)}{2}$D.(n+1)(n+2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow{b}$,$\overrightarrow{BC}$=-2$\overrightarrow{a}$+8$\overrightarrow{b}$,$\overrightarrow{CD}$=λ($\overrightarrow{a}$-$\overrightarrow{b}$),且A、B、D三点共线,则λ的值为(  )
A.3B.-3C.2D.-2

查看答案和解析>>

同步练习册答案