【题目】已知A={x|3≤x≤7},B={x|2a<x<a+4}.
(1)当a=1时,求A∩B和A∪B;
(2)若A∩B=,求实数a的取值范围.
【答案】
(1)解:a=1时,A={x|3≤x≤7},B={x|2<x<5},
故A∩B={x|3≤x<5},A∪B={x|2<x≤7}
(2)解:∵A={x|3≤x≤7},B={x|2a<x<a+4}.A∩B=,
∴当B=时,2a≥a+4,则a≥4;
当B≠时,2a<a+4,则a<4,由A∩B=,
得 或 解得a≤﹣1或 ,
综上可知,a的取值范围是
【解析】(1)借助数轴;(2)根据B=和B≠两种情况借助数轴列出不等式.
【考点精析】掌握集合的交集运算是解答本题的根本,需要知道交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.
科目:高中数学 来源: 题型:
【题目】设命题p:函数f(x)=lg(ax2﹣x+ )的值域为R;命题q:3x﹣9x<a对一切实数x恒成立,如果命题“p且q”为假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是检测某种浓度的农药随时间x(秒)渗入某种水果表皮深度y(微米)的一组结果.
时间x(秒) | 5 | 10 | 15 | 20 | 30 |
深度y(微米) | 6 | 10 | 10 | 13 | 16 |
(1)在规定的坐标系中,画出 x,y 的散点图;
(2)求y与x之间的回归方程,并预测40秒时的深度(回归方程精确到小数点后两位;预测结果精确到整数). 回归方程: =bx+a,其中 = ,a= ﹣b .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)
x | ﹣ | ||||
f(x) | 0 | 2 | 0 | ﹣2 | 0 |
(Ⅰ)请写出函数f(x)的最小正周期和解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0, ]上的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=x|x﹣a|.
(1)当a=0时,写出函数y=f(x)的单调递增区间;
(2)当a=1时,讨论函数y=f(x)的奇偶性;
(3)设a≠0,函数y=f(x)在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公差不为0的等差数列{an}的前n项和为 ,若S3=a4+2,且a1 , a3 , a13成等比数列
(1)求{an}的通项公式;
(2)设 ,求数列{bn}的前n项和为Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|< )的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数F(x)=3[f(x﹣ )]2+mf(x﹣ )+2在区间[0, ]上有四个不同零点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U=R,集合A={x|1<2x﹣1<5},B={y|y=( )x , x≥﹣2}.
(1)求(UA)∩B;
(2)若集合C={x|a﹣1<x﹣a<1},且CA,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若实数a,b,c满足loga3<logb3<logc3,则下列关系中不可能成立的( )
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com