精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线 为参数, ),在以坐标原点为极点, 轴的非负半轴为极轴的极坐标系中,曲线 .

(1)试将曲线化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;

(2)当时,两曲线相交于 两点,求.

【答案】(1) ;(2).

【解析】试题分析:

(1)由题意计算可得曲线化为直角坐标系中的普通方程为 的取值范围是

(2)首先求解圆心到直线的距离,然后利用圆的弦长计算公式可得.

试题解析:

(1)曲线 消去参数可得普通方程为.

曲线 ,两边同乘.可得普通方程为.

代入曲线的普通方程得:

而对,即,所以故当两曲线有公共点时, 的取值范围为.

(2)当时,曲线

两曲线交点 所在直线方程为.

曲线的圆心到直线的距离为

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋中共有8个球,其中3个红球、2个白球、3个黑球.若从袋中任取3个球,则所取3个球中至多有1个红球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点Pi(xi , yi)在直线li:aix+biy=ci上,若ai+bi=ici(i=1,2),且|P1P2|≥ 恒成立,则 + =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某算法的流程图如图所示,运行相应程序,输出S的值是(

A.60
B.61
C.62
D.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是计算1+ + +…+ 的值的一个程序框图,其中判断框内应填的是(

A.i>10
B.i<10
C.i>20
D.i<20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.

组号

分组

频数

频率

第1组

[160,165)

5

0.050

第2组

[165,170)

n

0.350

第3组

[170,175)

30

p

第4组

[175,180)

20

0.200

第5组

[180,185]

10

0.100

合计

100

1.000


(1)求频率分布表中n,p的值,并补充完整相应的频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函数f(x)= cos2x
(1)求函数f(x)的解析式及其单调递增区间;
(2)当x∈[0, ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名同学参加某次数学考试成绩(单位:分)的频率分布直方图如下:

)求频率分布直方图中的值;

)分别求出成绩落在中的学生人数;

)从成绩在的学生中任选2人,求此2人的成绩都在中的概率.

查看答案和解析>>

同步练习册答案