精英家教网 > 高中数学 > 题目详情
1.已知实数x,y满足$\left\{\begin{array}{l}y≥x+2\\ x+y≤6\\ x≥1\end{array}$,其中,则实数$\frac{y}{x+1}$的最小值为$\frac{4}{3}$.

分析 由约束条件作出可行域,再由$\frac{y}{x+1}$的几何意义,即可行域内的动点与定点P(-1,0)连线的斜率求解.

解答 解:由约束条件$\left\{\begin{array}{l}y≥x+2\\ x+y≤6\\ x≥1\end{array}$作出可行域如图,

联立$\left\{\begin{array}{l}{y=x+2}\\{x+y=6}\end{array}\right.$,解得A(2,4),
联立$\left\{\begin{array}{l}{x=1}\\{x+y=6}\end{array}\right.$,解得B(1,5),
$\frac{y}{x+1}$的几何意义为可行域内的动点与定点P(-1,0)连线的斜率,
由图可知,$\frac{y}{x+1}$的最小值为$\frac{4-0}{2-(-1)}=\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在△ABC中,内角A,B,C的对边分别为a,b,c,若A=60°,△ABC面积为$\sqrt{3}$,则$\frac{{4{b^2}+4{c^2}-3{a^2}}}{b+c}$的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-2x+3.
(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立?并说明理由;
(2)若存在实数x,使不等式m-f(x)>0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知α为第二象限的角,sinα=$\frac{1}{2}$,β为第一象限的角,cosβ=$\frac{3}{5}$. 则tan(2α-β)的值为(  )
A.$\frac{{48+25\sqrt{3}}}{39}$B.$\frac{{48-25\sqrt{3}}}{39}$C.$-\frac{{48+25\sqrt{3}}}{39}$D.$-\frac{{48-25\sqrt{3}}}{39}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若X~N(-1,62),且P(-3≤X≤-1)=0.4,则P(X≥1)等于(  )
A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}a{x^2}+3,x≥0\\({a+2}){e^{ax}},x<0\end{array}$为R上的单调函数,则实数a的取值范围是(  )
A.[-1,0)B.(0,1]C.(-2,0)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=lnx-x+1.
(Ⅰ)分析f(x)的单调性;
(Ⅱ)证明:当x∈(1,+∞)时,1<$\frac{x-1}{lnx}$<x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“$?{x_0}∈R,x_0^3-x_0^2+1>0$”的否定是(  )
A.?x∈R,x3-x2+1≤0B.$?{x_0}∈R,x_0^3-x_0^2+1<0$
C.$?{x_0}∈R,x_0^3-x_0^2+1≤0$D.$?x∈R,x_0^3-x_0^2+1>0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(θ+kπ)=-2cos(θ+kπ)(k∈Z),则$\frac{4sinθ-2cosθ}{5cosθ+3sinθ}$=10.

查看答案和解析>>

同步练习册答案