精英家教网 > 高中数学 > 题目详情
直线3x-4y+6=0与圆(x-2)2+(y-3)2=4的位置关系是(  )
A、直线与圆相交且过圆心
B、直线与圆相交但不过圆心
C、相切
D、相离
考点:直线与圆的位置关系
专题:直线与圆
分析:由圆的方程找出圆心坐标与半径,利用点到直线的距离公式求出圆心到已知直线的距离,与半径比较大小即可判断出直线与圆的位置关系.
解答: 解:∵圆(x-2)2+(y-3)2=4,
∴圆心坐标为(2,3),半径r=2,
∵圆心到直线3x-4y+6=0的距离d=
|3×2-4×3+6|
32+42
=0,
故直线与圆相交且过圆心,
故选:A
点评:此题考查了直线与圆的位置关系,直线与圆的位置关系由d与r大小来判断,当d>r时,直线与圆相离;当d<r时,直线与圆相交;当d=r时,直线与圆相切(其中d为圆心到直线的距离,r为圆的半径).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12345无实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AC=AB=AA1,E是BC的中点.
(1)求异面直线AE与A1C所成的角;
(2)若G为C1C上一点,且EG⊥A1C,试确定点G的位置;
(3)在(2)的条件下,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

D(x)=
1,x为有理数
0,x为无理数
,则给出下列结论
①函数D(x)的定义域为{x|x≠0};        
②函数D(x)的值域[0,1];
③函数D(x)是偶函数;                   
④函数D(x)不是单调函数.
⑤对任意的x∈R,都存在T0∈R,使得D(x+T0)=D(x).
其中的正确的结论是
 
(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)y=x3
(2)y=x
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求f(x)单调减区间;
(3)求函数f(x)的最大值,并且求使f(x)取得最大值时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产的产品在出厂前都要做质量检测,每件一等品都能通过检测,每件二等品通过检测的概率均为
2
3
,现有5件产品,其中2件一等品.3件二等品.记该5件产品通过检测的产品个数为ξ,则随机变量的数学期望Eξ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-(2a+2)x+a(a+2)≤0}.B={x|y=log2(4-x2)}
(1)若a=1,求A∩B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x-y+2=0与圆x2+y2=4相交于A,B,则弦长|AB|=
 

查看答案和解析>>

同步练习册答案