精英家教网 > 高中数学 > 题目详情
若函数是奇函数,则常数a的值等于( )
A.-1
B.1
C.
D.
【答案】分析:根据若函数是奇函数,得到f(-x)=-f(x),代入函数解析式,得到恒成立的方程,整理对应相等,即可求得常数a的值.
解答:解:∵函数是奇函数,
=
=
解得a=
故选D.
点评:考查函数的奇偶性的定义,以及方程的思想方法求参数的值,特别注意函数的定义域,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•成都模拟)已知函数f(x)的定义域为R,且f(x)不为常函数,有以下命题:
①函数g(x)=f(x)+f(-x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2-x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对任意x∈R都有f(x)+f(2+x)=0,则f(x)的图象关于直线x=1对称;
④对任意x1,x2∈R且x1≠x2,若
f(x1)-f(x2)x1-x2
>0
恒成立,则f(x)为(-∞,+∞)上的增函数.
其中正确命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数的定义域为R,且不为常函数,有以下命题:

1)函数一定是偶函数;

2)若对任意都有,则是以2为周期的周期函数;

3)若是奇函数,且对任意都有,则的图像关于直线对称;

4)对任意,且,若恒成立,则上的增函数。

    其中正确命题的序号是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数f(x)的定义域为R,且f(x)不为常函数,有以下命题:
①函数g(x)=f(x)+f(-x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2-x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对任意x∈R都有f(x)+f(2+x)=0,则f(x)的图象关于直线x=1对称;
④对任意x1,x2∈R且x1≠x2,若数学公式恒成立,则f(x)为(-∞,+∞)上的增函数.
其中正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:成都模拟 题型:填空题

已知函数f(x)的定义域为R,且f(x)不为常函数,有以下命题:
①函数g(x)=f(x)+f(-x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2-x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对任意x∈R都有f(x)+f(2+x)=0,则f(x)的图象关于直线x=1对称;
④对任意x1,x2∈R且x1≠x2,若
f(x1)-f(x2)
x1-x2
>0
恒成立,则f(x)为(-∞,+∞)上的增函数.
其中正确命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年四川省成都市高三摸底数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)的定义域为R,且f(x)不为常函数,有以下命题:
①函数g(x)=f(x)+f(-x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2-x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对任意x∈R都有f(x)+f(2+x)=0,则f(x)的图象关于直线x=1对称;
④对任意x1,x2∈R且x1≠x2,若恒成立,则f(x)为(-∞,+∞)上的增函数.
其中正确命题的序号是   

查看答案和解析>>

同步练习册答案