精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的极值点;

(2)设,若函数 内有两个极值点,求证: .

【答案】(1)详见解析;(2)详见解析.

【解析】试题分析:(1)求出的导数,并分解因式,对讨论,分 求得 的范围,可得函数增区间, 求得 的范围,可得函数的减区间可得所求极值点;(2)求出的解析式和导数,由题意可得有两个不为的正根运用判别式大于零和韦达定理,可得化简,由不等式的性质即可得证.

试题解析:(1)∵

①若,由;由,可得,即函数上为增函数;由,可得,即函数上为减函数,所以函数上有唯一的极小值点,无极大值点.

②若,由;由,可得,即函数上为增函数;由,可得,即函数上为减函数,所以函数上有极大值点,极小值点.

③若,则,在上大于等于零恒成立,故函数上单调递增,无极值点.

④ 若,由;由可得,所以函数上为增函数;由,可得,所以函数上为减函数,所以函数上有极大值点,极小值点.

(2),则

,由题意可知方程上有两个不等实数根.所以

解得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+ln(x+1).
(1)当a=﹣ 时,求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,+∞)上为减函数,求实数a的取值范围;
(3)当x∈[0,+∞)时,不等式f(x)﹣x≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;

(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣x2 x,则f(﹣a2)与f(﹣1)的大小关系为(
A.f(﹣a2)≤f(﹣1)
B.f(﹣a2)<f(﹣1)
C.f(﹣a2)≥f(﹣1)
D.f(﹣a2)与f(﹣1)的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋内有4个不同的红球,6个不同的白球,
(1)从中任取4个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将集合{2x+2y+2z|x,y,z∈N,x<y<z}中的数从小到大排列,第100个数为(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB.

(1)求AD1与面BB1D1D所成角的正弦值;
(2)点E在侧棱AA1上,若二面角E﹣BD﹣C1的余弦值为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为 .类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数). 

(1)若在其定义域内单调递增,求实数的取值范围;

(2)若,且有两个极值点 ),求取值范围.

查看答案和解析>>

同步练习册答案