精英家教网 > 高中数学 > 题目详情
如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=2,AB⊥AC,M、N分别是CC1、BC的中点,点P在线段A1B1上,且
A1P
A 1B1

(1)证明:无论λ取何值,总有AM⊥PN;
(2)当λ=
1
2
时,求平面PMN与平面ABC所成锐二面角的余弦值.
考点:二面角的平面角及求法,直线与平面垂直的性质
专题:空间位置关系与距离,空间角
分析:(1)以AB,AC,AA1分别为x,y,z轴,建立空间直角坐标系A-xyz,求出各点的坐标及对应向量的坐标,易判断
PN
AM
=0,即AM⊥PN.
(2)分别求出平面ABC的一个法向量和平面PMN的法向量,由此利用向量法能求出平面PMN与平面ABC所成锐二面角的余弦值.
解答: (1)证明:如图,以A为原点,AB,AC,AA1分别为x,y,z轴,
建立空间直角坐标系A-xyz.
则P(λ,0,2),N(1,1,0),M(0,2,1),
从而
PN
=(1-λ,1,-2),
AM
=(0,2,1),
PN
MN
=0,∴无论λ取何值,总有AM⊥PN.
(2)平面ABC的一个法向量为
n
=(0,0,1),
当λ=
1
2
时,P(1,0,2),M(0,2,1),N(1,1,0),
PM
=(-1,2,-1),
PN
=(1,-1,-1),
设平面PMN的法向量
m
=(x,y,z),
m
PM
=-x+2y-z=0
m
PN
=x-y-z=0
,取y=2,得
n
=(3,2,1),
设平面PMN与平面ABC所成锐二面角的平面角为θ,
cosθ=|cos<
m
n
|=|
m
n
|
m
|•|
n
|
|=
1
14
=
14
14

∴平面PMN与平面ABC所成锐二面角的余弦值为
14
14
点评:本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知2sinθ-cosθ=1,求
sinθ+cosθ+1
sinθ-cosθ+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|a-1<x<a+2},函数y=
log2(x+1)
2-x
的定义域是集合B
(Ⅰ)若a=1,求A∪B
(Ⅱ)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,并且α是第三象限角
(Ⅰ)求sinα和cosα的值.
(Ⅱ)求sin(α+
π
2
)•sin(π-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,与函数y=x有相同图象的一个函数是(  )
A、y=
x
B、y=
x2
x
C、y=logaax
D、y=(
x
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点分别为A(1,2),B(4,1),C(3,6).
(1)求∠A的平分线所在直线的方程;
(2)若直线kx-y-2k-1=0与△ABC的边AB,AC相交,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C所对的边分别是为a,b,c,若A∈(
π
2
,π),且
1
sinA
+
1
cosA
=-2
2

(Ⅰ)求角A;
(Ⅱ)若a=
6
+
2
,b=2
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1-x
+
x
的定义域为(  )
A、{x|x≤1}
B、{x|x≥0}
C、{x|x≥1或x≤0}
D、{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1=
1
2
,an=f(n)(n∈N*),则数列{an}的前n项和Sn的取值范围是(  )
A、[
1
2
,2)
B、[
1
2
,2]
C、[
1
2
,1)
D、[
1
2
,1]

查看答案和解析>>

同步练习册答案