精英家教网 > 高中数学 > 题目详情
已知数列{an}和{bn}满足a1=m,an+1an+n,bn=an-
2n
3
+
4
9

(1)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;
(2)当λ=-
1
2
时,试判断{bn}是否为等比数列.
分析:(1)要证明{an}不是等差数列,只须证明a1+a3≠2a2,利用反证法即可完成;
(2)要判断{bn}是否为等比数列,只须紧扣等比数列的定义,证明bn+1:bn=同一个常数,注意对b1≠0的讨论.
解答:解:(1)当m=1时,a1=1.a2=λ+1,a3=λ(λ+1)+2=λ2+λ+2
假设{an}是等差数列,由a1+a3=2a2
得λ2+λ+3=2(λ+1),
即λ2-λ+1=0,
∴△=-3<0,
∴方程无实根.
故对于任意的实数λ,{an}一定不是等差数列.
(2)当λ=-
1
2
时,an+1=-
1
2
an+n,bn=an-
2n
3
+
4
9
bn+1=an+1-
2(n+1)
3
+
4
9
=(-
1
2
an+n)-
2(n+1)
3
+
4
9
=-
1
2
an+
n
3
-
2
9

=-
1
2
(an-
2n
3
+
4
9
)=-
1
2
bn
b1=m-
2
3
+
4
9
=m-
2
9

当m≠
2
9
时,{bn}是以m-
2
9
为首项,-
1
2
为公比的等比数列

当m=
2
9
时,{bn}不是等比数列
点评:判断一个数列是等差数列或等比数列的常规方法是根据定义判断,而判断一个数列不是等差数列或等比数列,则只须证明其中的前三项构不成等差或等比关系即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a=1,a1=2,a2>0,bn=
a1an+1
(n∈N*)
.且{bn}是以
a为公比的等比数列.
(Ⅰ)证明:aa+2=a1a2
(Ⅱ)若a3n-1+2a2,证明数例{cx}是等比数例;
(Ⅲ)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和等比数列{bn}满足:a1=b1=4,a2=b2=2,a3=1,且数列{an+1-an}是等差数列,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)问是否存在k∈N*,使得ak-bk∈(
12
,3]
?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ为实数,且λ≠-18,n为正整数.
(Ⅰ)求证:{bn}是等比数列;
(Ⅱ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)已知数列{an}和{bn}满足a1=1且bn=1-2anbn+1=
bn
1-4 
a
2
n

(I)证明:数列{
1
an
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求使不等式(1+a1)(1+a2)…(1+an)≥k
1
b2b3bnbn+1 
对任意正整数n都成立的最大实数k.

查看答案和解析>>

同步练习册答案