精英家教网 > 高中数学 > 题目详情
已知点M(3,1),圆(x-1)2+(y-2)2=4.
(1)求过M点的圆的切线方程;
(2)若直线ax-y+4=0与圆相交于A、B两点,且弦AB的长为2
3
,求a的值.
分析:(1)由圆的方程找出圆心坐标与半径,分两种情况考虑:若切线方程斜率不存在,直线x=3满足题意;若斜率存在,设出切线方程,根据直线与圆相切时圆心到切线的距离d=r,求出k的值,综上即可确定出满足题意的切线方程;
(2)由AB弦长,以及圆的半径,利用点到直线的距离公式,根据垂径定理及勾股定理列出关于a的方程,求出方程的解即可得到a的值.
解答:解:(1)由圆的方程得到圆心(1,2),半径r=2,
当直线斜率不存在时,方程x=3与圆相切;
当直线斜率存在时,设方程为y-1=k(x-3),即kx-y+1-3k=0,
由题意得:
|k-2+1-3k|
k2+1
=2,
解得:k=
3
4

∴方程为y-1=
3
4
(x-3),即3x-4y-5=0,
则过点M的切线方程为x=3或3x-4y-5=0;
(2)∵圆心到直线ax-y+4=0的距离d=
|a+2|
a2+1

∴(
|a+2|
a2+1
2+(
2
3
2
2=4,
解得:a=-
3
4
点评:此题考查了直线与圆相交的性质,涉及的知识有:点到直线的距离公式,垂径定理,勾股定理,以及圆的标准方程,利用了分类讨论的思想,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.
(1)求过M点的圆的切线方程;
(2)若直线ax-y+4=0与圆相切,求a的值;
(3)若直线ax-y+4=0与圆相交于A,B两点,且弦AB的长为2
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(3,1),直线l:ax-y+4=0及圆C:x2+y2-2x-4y+1=0
(1)求经过M点的圆C的切线方程;
(2)若直线l与圆C相切,求a的值;
(3)若直线l与圆C相交与A,B两点,且弦AB的长为2
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点M(3,1),直线l:ax-y+4=0及圆C:x2+y2-2x-4y+1=0
(1)求经过M点的圆C的切线方程;
(2)若直线l与圆C相切,求a的值;
(3)若直线l与圆C相交与A,B两点,且弦AB的长为2数学公式,求a的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省鹤岗一中高二(上)期中数学试卷(文科)(解析版) 题型:解答题

已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.
(1)求过M点的圆的切线方程;
(2)若直线ax-y+4=0与圆相切,求a的值;
(3)若直线ax-y+4=0与圆相交于A,B两点,且弦AB的长为,求a的值.

查看答案和解析>>

同步练习册答案