精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知椭圆C:(a>b>0)的右焦点为F(1,0),离心率为,P为左顶点。
(1)求椭圆C的方程;
(2)设过点F的直线交椭圆C于A,B两点,若△PAB的面积为,求直线AB的方程。
(1)+="1." (2) 直线AB的方程为x+y-1=0或x-y-1="0."

试题分析:解:(1)由题意可知:c=1,= ,所以a=2.
所以b=a-c=3.
所以椭圆C的标准方程为+=1.                  
(2)根据题意可设直线AB的方程为x=my+1,A(x,y),B(x,y).
可得(3m+4)y+6my-9=0.
所以△=36m+36(3m+4)>0,y+y=,yy=-.
因为P为左顶点,所以P的坐标是(-2,0).
所以△PAB的面积S=.
=
因为△PAB的面积为,所以=.
令t=,则=(t≥1).
解得t=(舍),t=2.
所以m=.
所以直线AB的方程为x+y-1=0或x-y-1="0."
点评:研究椭圆的方程的求解一般用待定系数法,同时可以结合韦达定理来得到弦长表示面积,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)
若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的两个焦点分别为,过作椭圆长轴的垂线交椭圆于点
为等腰直角三角形,则椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.
(Ⅰ)求抛物线的方程;
(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的一条渐近线方程为,则此双曲线的离心率为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,已知椭圆=1(ab>0),F1F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若=2·,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线x2=-y,的准线方程是(   )。
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点分别是椭圆的左、右焦点,过且垂直于轴的直线与椭圆交于AB两点,若为正三角形,则该椭圆的离心率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知圆的圆心为原点,且与直线相切。

(1)求圆的方程;
(2)点在直线上,过点引圆的两条切线,切点为,求证:直线恒过定点。

查看答案和解析>>

同步练习册答案