精英家教网 > 高中数学 > 题目详情

【题目】在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受到,而信号处理背后的“功臣”就是正弦型函数.函数的图象就可以近似的模拟某种信号的波形,则下列说法正确的是( )

A.函数为周期函数,且最小正周期为

B.函数为奇函数

C.函数的图象关于直线对称

D.函数的导函数的最大值为

【答案】BCD

【解析】

利用周期的定义可判断A选项的正误;利用奇偶性的定义可判断B选项的正误;利用函数的对称性可判断C选项的正误;求得函数的导数,求出的最大值,可判断D选项的正误.

所以,不是函数的最小正周期,A选项错误;

且函数的定义域为,所以,函数为奇函数,B选项正确;

所以,函数的图象关于直线对称,C选项正确;

,又,所以,函数的最大值为D选项正确.

故选:BCD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数fx)为奇函数,且当x≥0时,fx)=excosx,则不等式f2x1+fx2)>0的解集为( )

A.(﹣1B.(﹣C.+∞D.1+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为(  )

A. 6B. 5C. 4D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在x轴上的椭圆,离心率,且经过抛物线的焦点.若过点的直线斜率不等于零与椭圆交于不同的两点EBF之间

求椭圆的标准方程;

求直线l斜率的取值范围;

面积之比为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的方程为,则下列结论正确的是(

A.时,曲线为椭圆,其焦距为

B.时,曲线为双曲线,其离心率为

C.存在实数使得曲线为焦点在轴上的双曲线

D.时,曲线为双曲线,其渐近线与圆相切

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了严格监控某种零件的一条生产线的生产过程,某企业每天从该生产线上随机抽取10000个零件,并测量其内径(单位:.根据长期生产经验,认为这条生产线正常状态下生产的零件的内径服从正态分布.如果加工的零件内径小于或大于均为不合格品,其余为合格品.

1)假设生产状态正常,请估计一天内抽取的10000个零件中不合格品的个数约为多少;

2)若生产的某件产品为合格品则该件产品盈利;若生产的某件产品为不合格品则该件产品亏损.已知每件产品的利润(单位:元)与零件的内径有如下关系:.求该企业一天从生产线上随机抽取10000个零件的平均利润.

附:若随机变量服从正态分布,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点(1)处的切线方程为

1)求函数的解析式,并证明:

2)已知,且函数与函数的图象交于两点,且线段的中点为,证明:(1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,EFG分别为AA1BCC1D1的中点,现有下面三个结论:①△EFG为正三角形;②异面直线A1GC1F所成角为60°;③AC∥平面EFG.其中所有正确结论的编号是(

A.B.②③C.①②D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为正实数.

1)求函数的单调区间;

2)若函数有两个极值点,求证:.

查看答案和解析>>

同步练习册答案