精英家教网 > 高中数学 > 题目详情
(2011•东城区一模)已知四棱锥P-ABCD的底面是菱形.∠BCD=60°,AB=PB=PD=2,PC=
3
,AC与BD交于O点,E,H分别为PA,OC的中点.
(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)求证:PH⊥平面ABCD;
(Ⅲ)求直线CE与平面PAB所成角的正弦值.
分析:(Ⅰ)因为E,O分别为PA,AC的中点,所以EO∥PC.由此能够证明PC∥平面BDE.
(Ⅱ)连接OP,因为PB=PD,所以OP⊥BD.在菱形ABCD中,BD⊥AC,又因为OP∩AC=O,所以BD⊥平面PAC.又PH?平面PAC,所以BD⊥PH.由此能够证明PH⊥平面ABCD.
(Ⅲ)过点O作OZ∥PH,所以OZ⊥平面ABCD.以O为原点,OA,OB,OZ所在直线为x,y,z轴,建立空间直角坐标系.得
AB
=(-
3
,1,0)
AP
=(-
3
3
2
,0,
3
2
)
CE
=(
5
3
4
,0,
3
4
)
.设
n
=(x,y,z)是平面PAB的一个法向量,由
n
AB
=0
n
AP
=0
,得
n
=(1,
3
3
)
.由此能求出直线CE与平面PAB所成角的正弦值.
解答:(Ⅰ)证明:因为E,O分别为PA,AC的中点,
所以EO∥PC
又EO?平面BDE,PC?平面BDE.
所以PC∥平面BDE.
(Ⅱ)证明:连接OP,
因为PB=PD,
所以OP⊥BD.
在菱形ABCD中,BD⊥AC,
又因为OP∩AC=O,所以BD⊥平面PAC.
又PH?平面PAC,所以BD⊥PH.
在直角三角形POB中,OB=1,PB=2,所以OP=
3

PC=
3
,H为OC的中点,所以PH⊥OC.
又因为BD∩OC=O
所以PH⊥平面ABCD.
(Ⅲ)解:过点O作OZ∥PH,所以OZ⊥平面ABCD.
如图,以O为原点,OA,OB,OZ所在直线为x,y,z轴,建立空间直角坐标系.
可得,A(
3
,0,0)
,B(0,1,0),C(-
3
,0,0)

P(-
3
2
,0,
3
2
)
E(
3
4
,0,
3
4
)

所以
AB
=(-
3
,1,0)
AP
=(-
3
3
2
,0,
3
2
)
CE
=(
5
3
4
,0,
3
4
)

n
=(x,y,z)是平面PAB的一个法向量,
n
AB
=0
n
AP
=0
,即
-
3
x+y=0
-
3
3
2
x+
3
2
z=0

令x=1,则
n
=(1,
3
3
)
..
设直线CE与平面PAB所成的角为θ,
sinθ=cos<n,
CE
 >=
4
7

所以直线CE与平面PAB所成角的正弦值为
4
7
点评:本题考查直线和平面平行、直线和平面垂直的证明方法和求直线与平面在所成角的正弦值.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•东城区一模)过抛物线y2=2px(p>0)的焦点作倾斜角为60°的直线,与抛物线分别交于A,B两点(点A在x轴上方),
|AF||BF|
=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区一模)已知α∈(
π
2
,π)
tan(α+
π
4
)=
1
7
,那么sinα+cosα的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区一模)已知函数y=sin(ωx+φ)(ω>0, 0<φ≤
π
2
)
的部分图象如图所示,则点P(ω,φ)的坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区一模)从某地高中男生中随机抽取100名同学,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图).由图中数据可知体重的平均值为
64.5
64.5
kg;若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取12人参加一项活动,再从这12人选两人当正、负队长,则这两人身高不在同一组内的概率为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区一模)对于n∈N*(n≥2),定义一个如下数阵:Ann=
a11a12a1n
a21a22a2n
an1an2ann

其中对任意的1≤i≤n,1≤j≤n,当i能整除j时,aij=1;当i不能整除j时,aij=0.
(Ⅰ)当n=4时,试写出数阵A44
(Ⅱ)设t(j)=
n
i=1
aij=a1j+a2j+…+anj
.若[x]表示不超过x的最大整数,
求证:
n
j=1
t(j)
=
n
i=1
n
i
 ]

查看答案和解析>>

同步练习册答案