精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}满足a1=a,an+1=can+1﹣c(n∈N*),其中a,c为实数,且c≠0. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,求数列{bn}的前n项和Sn

【答案】解:(Ⅰ)∵an+1=can+1﹣c,an+1﹣1=c(an﹣1),∴当a1=a≠1时,{an﹣1}是首项为a﹣1,公比为c的等比数列
∴an﹣1=(a﹣1)cn1
当a=1时,an=1仍满足上式.
∴数列{an﹣1}的通项公式为an=(a﹣1)cn1+1(n∈N*);
(Ⅱ)由(1)得,当 时,


两式作差得

=

【解析】(1)整理an+1=can+1﹣c得an+1﹣1=c(an﹣1),进而判断出当a1=a≠1时,{an﹣1}是首项为a﹣1,公比为c的等比数列,进而根据等比数列的性质求得其通项公式,当a=1时,也成立,进而可得答案.(2)根据(1)中的an , 求得bn , 进而根据错位相减法求得数列的前n项的和.
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系),还要掌握数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】用an表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则a9=9;10的因数有1,2,5,10,则a10=5,记数列{an}的前n项和为Sn , 则S =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圆,求实数m的范围;
(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|= ,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+x(a∈R,a≠0).
(1)当a>0时,用作差法证明:f( )< [f(x1)+f(x2)];
(2)已知当x∈[0,1]时,|f(x)|≤1恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程是为参数),以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,曲线的极坐标方程是.

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)求直线被曲线的截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗质地均匀的骰子先后抛掷2次,观察其向上的点数,分别记为x,y.
(1)若记“x+y=8”为事件A,求事件A发生的概率;
(2)若记“x2+y2≤12”为事件B,求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:

表一:男生

表二:女生

(1)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率;

(2)由表中统计数据填写下面的列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.

参考公式: ,其中.

参考数据:

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)试讨论函数的单调性;

(2)设,记,当时,若方程有两个不相等的实根 ,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为[0,10),[10,20),[20,30),[30,40),[40,50].
(1)求频率分布直方图中a的值;
(2)从统计学的角度说明学校是否需要推迟5分钟上课;
(3)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求恰有一个学生的单程时间落在[40,50]上的概率.

查看答案和解析>>

同步练习册答案