精英家教网 > 高中数学 > 题目详情

【题目】已知函数处取得极值.

(1)当时,求曲线处的切线方程;

(2)若函数有三个零点,求实数的取值范围.

【答案】(1)(2)

【解析】

先对函数求导,根据函数处取得极值,求出

(1)将代入解析式,再由导数的方法求出其在处的切线斜率,进而可求出结果;

(2)函数有三个零点,等价于方程有三个不等实根,也即是函数与直线有三个不同的交点,由导数的方法研究函数的极值,即可得出结果.

解:

由题意知,所以.

所以.

(1)当时,

所以

所以处的切线方程为,即.

(2)令,则.

,则的图象有三个交点.

所以当变化时,的变化情况为

1

+

0

-

0

+

增函数

极大值

减函数

极小值

增函数

所以.

又当时,;当时,

所以,即.

所以的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面中点.

(1)试在上确定一点,使得平面

(2)点在满足(1)的条件下,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了201850位农民的年收入并制成如下频率分布直方图:

附:参考数据与公式 ,若 ,则① ;② ;③ .

1)根据频率分布直方图估计50位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);

2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ,其中近似为年平均收入 近似为样本方差 ,经计算得:,利用该正态分布,求:

i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

ii)为了调研精准扶贫,不落一人的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的单调区间,并指出该函数在其单调区间上是增函数还是减函数.

1fx)=-

2fx)=

3fx)=-x22|x|3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列函数的奇偶性:

1fx)=x3x

2

3

4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某海滨浴场海浪的高度y(米)是时间t的(0≤t≤24,单位:小时)函数,记作y=ft),下表是某日各时的浪高数据:

th

0

3

6

9

12

15

18

21

24

ym

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

经长期观测y=ft的曲线可近似地看成是函数y=Acosωtb的图象

1)根据以上数据,求出函数y=Acosωtb的最小正周期T、振幅A及函数表达式;

2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8时到晚上20时之间,有多长时间可供冲浪者进行运动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三(3)班学生要安排毕业晚会的3个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,3个音乐节目恰有2个节目连排,则不同排法的种数是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-ax-1,其中e是自然对数的底数,实数a是常数.

(1)设a=e,求函数f(x)的图象在点(1,f(1))处的切线方程;

(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足约束条件,若取得最大值的最优解不唯一,则实数的值为__________

查看答案和解析>>

同步练习册答案