精英家教网 > 高中数学 > 题目详情
已知A,B两点在抛物线C:x2=4y上,点M(0,4)满足=λ.
(1)求证:
(2)设抛物线C过A、B两点的切线交于点N.
(ⅰ)求证:点N在一条定直线上;    
(ⅱ)设4≤λ≤9,求直线MN在x轴上截距的取值范围.
(1)证明:∵=0,∴.
(2)(ⅰ)点N(,-4),所以点N在定直线y=-4上. (ⅱ) [-,-]∪[].

试题分析:设A(x1,y1),B(x2,y2),
lAB:y=kx+4与x2=4y联立得x2-4kx-16=0,        
Δ=(-4k)2-4(-16)=16k2+64>0,
x1+x2=4k,x1x2=-16,                             2分
(1)证明:∵=x1x2+y1y2=x1x2+(kx1+4)(kx2+4)
=(1+k2)x1x2+4k(x1+x2)+16
=(1+k2)(-16)+4k(4k)+16=0
.                                          4分
(2)(ⅰ)证明:过点A的切线:
y=x1(x-x1)+y1x1x-x12,  ①
过点B的切线:y=x2x-x22,  ②                          6分
联立①②得点N(,-4),所以点N在定直线y=-4上.     8分
(ⅱ)∵=λ
∴(x1,y1-4)=λ(-x2,4-y2),
联立x1=-λx2,x1+x2=4k,x1x2=-16,
可得k2=λ+-2,4≤λ≤9,                 11分
≤k2.
直线MN:y=x+4在x轴上的截距为k.
∴直线MN在x轴上截距的取值范围是[-,-]∪[].       14分
点评:熟练掌握向量的坐标运算,灵活运用直线的特征是解决此类问题的关键,属常考题型
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分13分)
(1)某三棱锥的侧视图和俯视图如图所示,求三棱锥的体积. 
 
(2)过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点. 用表示A,B之间的距离;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为双曲线的左右焦点,点P在双曲线上,的平分线分线段的比为5∶1,则双曲线的离心率的取值范围是           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的长轴长为,一个焦点的坐标为(1,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx与椭圆C交于A,B两点,点P为椭圆的右顶点.
(ⅰ)若直线l斜率k=1,求△ABP的面积;
(ⅱ)若直线AP,BP的斜率分别为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程+=1({1,2,3,4, ,2013})的曲线中,所有圆面积的和等于       ,离心率最小的椭圆方程为                      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(Ⅰ)判断曲线的切线能否与曲线相切?并说明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率,则k的取值范围是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直角坐标平面上,为原点,为动点,. 过点轴于,过轴于点. 记点的轨迹为曲线
,过点作直线交曲线于两个不同的点(点之间).
(1)求曲线的方程;
(2)是否存在直线,使得,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设抛物线方程为为直线上任意一点,过引抛物线的切线,切点分别为

(1)求证:三点的横坐标成等差数列;
(2)已知当点的坐标为时,.求此时抛物线的方程。

查看答案和解析>>

同步练习册答案